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Atomic-number identification of heavy RI beams using the energy
loss in a Xe-based gas

T. Sumikama,∗1 N. Fukuda,∗1 and M. Yoshimoto∗1

Radioactive isotope (RI) beams produced at RIBF
are tagged event-by-event with the atomic number Z
and mass-to-charge ratio A/Q determined using beam-
line detectors. For heavy RI beams, particle identifica-
tion (PID) becomes difficult owing to the change in Q
inside the beam-line detectors because Z is determined
from the energy loss depending on Q2. Blobs in the PID
plot were clearly visible for the 208Rn case1) but not for
the 220Th case.2) The relative Z resolutions were 0.45%
and 0.69% (1σ) for the 185-MeV/nucleon 208Rn beam
and 315-MeV/nucleon 220Th beam, respectively. The
worse resolution was considered to be due to the energy-
loss straggling caused by charge-state fluctuation in the
gas of the ionization chamber. The difference between
these two cases indicates the impact of the energy de-
pendence of the charge-state fluctuation.
In this paper, the difference in the Z resolutions is

discussed in regards to the energy dependence of the
cross section of the change in Q in the gas using the
GLOBAL code.3) Figure 1 shows the energy depen-
dence of the partial mean free path length L, given
a change in Z − Q from 1 to 2 or from 2 to 1. The
energy dependence of L is mainly for the electron-
pickup reaction. In the 208Rn case, the mean value
of the equilibrium charge-state distribution ⟨Q⟩ is 84.5
at 185 MeV/nucleon. Since ⟨Q⟩ is a decimal, the
charge state must change multiple times in the ion-
ization chamber to make the effective Q in a single
event closer to 84.5. L (Z−Q = 1→2) is roughly 1/2 of
the effective length of the ionization chamber, as indi-
cated by the dotted line in Fig. 1. Thus, even if Z −Q
changes from 2 to 1, it could be back. In contrast, L
(Z−Q = 1→2) is longer than the effective length at
315 MeV/nucleon. Z−Q might not change to 2 once it
becomes 1. This is mainly the nature of Ar gas, which
accounts for 90% of the P10 gas. Figure 1 also shows L
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Fig. 1. Partial mean free path length of the change in the

charge state in the ionization chamber as a function of

the energy of the 208Rn beam.
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of a Xe-based mixed gas (Xe 90% + CH4 10%). The gas
pressure was determined so that the energy deposit at
300 MeV/nucleon is same as that of the P10 gas. Even
at 300 MeV/nucleon, L is shorter than that of P10 at
185 MeV/nucleon, indicating a better Z resolution.
The energy loss in the ionization chamber was sim-

ulated by using the energy-loss code ATIMA4) and
GLOBAL. The fluctuation in Q was taken into ac-
count by the Monte Carlo method. The Z resolution of
the 180-MeV/nucleon 210

85At beam was simulated to be
0.46%, which is consistent with the experimental value
of 0.45%. Figure 2 shows the energy deposit of the 300-
MeV/nucleon 208Rn and 206Ac beams into the effective
region of the ionization chamber. The Z resolution is
improved from 0.60% for the P10 gas to 0.39% for the
Xe-based gas. This result is consistent with the discus-
sion of Fig. 1.
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Fig. 2. Monte Carlo simulation of the energy deposit in the

ionization chamber. Half of the energy-loss straggling in

ATIMA was applied for the energy deposit.5)

An experimental study of PID using a Xe-based gas
was already conducted, and a good Z resolution was
obtained.6,7)
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