Large amplitude collective motion in ${ }^{44} \mathrm{~S}^{\dagger}$

Y. Suzuki, ${ }^{* 1}$ W. Horiuchi, ${ }^{* 2, * 3, * 4, * 5}$ and M. Kimura*5

It is well known that neutron-rich $N \simeq 28$ nuclei exhibit strong quadrupole collectivity. ${ }^{1,2)}$ Using antisymmetrized molecular dynamics (AMD), we have discovered many interesting features such as triaxial deformation and shape coexistence in ${ }^{42} \mathrm{Si}$ and neighboring nuclei. ${ }^{3,4)}$ Herein, we report the large-amplitude collective motion (LACM) in ${ }^{44}$ S.

Figure 1 shows the comparison between the energy curves and collective amplitudes of ${ }^{40} \mathrm{Mg}$ and ${ }^{44} \mathrm{~S}$. ${ }^{40} \mathrm{Mg}$ possesses the prolately-deformed energy minimum and the collective amplitude of the ground state is localized around it, whereas the 0_{2}^{+}state is localized in the oblately-deformed region. Thus, ${ }^{40} \mathrm{Mg}$ depicts the coexistence of the prolate and oblate rigid rotors. In contrast, ${ }^{44} \mathrm{~S}$ exhibits a significantly different structure: The energy curve is extremely flat as a function of γ and the collective amplitudes of the ground, and the 0_{2}^{+}states demonstrate broad and non-localized distributions, which imply that ${ }^{44} \mathrm{~S}$ possesses no rigid shape due to the LACM.

Fig. 1. Energy curves and collective amplitudes of the 0_{1}^{+} and 0_{2}^{+}states as functions of the quadrupole deformation parameter γ. The values of quadrupole parameter β are set to 0.35 and 0.30 for ${ }^{40} \mathrm{Mg}$ and ${ }^{44} \mathrm{~S}$, respectively.

A general question is as follows: Based on which type of physical quantity, can we distinguish rigid-rotor and LACM? The monopole transition is the solution to this question. The monopole transition strength (Table 1) is strongly hindered in ${ }^{40} \mathrm{Mg}$, whereas it is

[^0]Table 1. Electric ($E 0$) and isoscalar ($I S 0$) monopole transition strengths in Weisskopf unit (Wu).

	${ }^{40} \mathrm{Mg}$	${ }^{44} \mathrm{~S}$ (calc.)	${ }^{44} \mathrm{~S}(\operatorname{expt} .)^{5)}$
$B\left(E 0 ; 0_{1}^{+} \rightarrow 0_{2}^{+}\right)$	0.0	0.04	$0.022(2)$
$B\left(I S 0 ; 0_{1}^{+} \rightarrow 0_{2}^{+}\right)$	0.0	0.38	

non-negligible in ${ }^{44}$ S. ${ }^{5)}$ This feature can be explained using a two-configuration mixing model. ${ }^{6)}{ }^{40} \mathrm{Mg}$ possesses prolate ground state and oblate 0_{2}^{+}state; hence, the monopole matrix element is given as \langle obl. $| \mathcal{M} \mid$ pro. \rangle, where |pro.〉 and |obl.〉 denote the prolate and oblate configurations, respectively, and \mathcal{M} denotes the transition operator (1 p 1 h operator). This matrix element vanishes because single-particle configurations of |pro.) and |obl.) differ by 2 p 2 h . This is the reason why the transition is strongly hindered in ${ }^{40} \mathrm{Mg}$.

Owing to LACM, we approximate ${ }^{44} \mathrm{~S}$ as a mixture of prolate and oblate shapes with equal amplitudes,

$$
\begin{align*}
\left|0_{1}^{+}\right\rangle & =(\mid \text {pro. }\rangle+\mid \text { obl. }\rangle) / \sqrt{2} \tag{1}\\
\left|0_{2}^{+}\right\rangle & =(\mid \text {pro. }\rangle-\mid \text { obl. }\rangle) / \sqrt{2} . \tag{2}
\end{align*}
$$

In this case, the transition matrix read

$$
\begin{equation*}
\left.\left.\left.\left\langle 0_{2}^{+}\right| \mathcal{M}\left|0_{1}^{+}\right\rangle=\frac{1}{2}\{\langle\text { pro. }| \mathcal{M} \mid \text { pro. }\rangle-\langle\text { obl. }| \mathcal{M} \right\rvert\, \text { obl. }\right\rangle\right\} \tag{3}
\end{equation*}
$$

Thus, the transition matrix is proportional to the difference in the squared-radii of the prolate and oblate shapes. Consequently, ${ }^{44} \mathrm{~S}$ possesses non-negligible monopole transition strength. Using the single AMD wave functions with prolate and oblate deformation and Eq. (3), we obtain $B(E 0)=0.05 \mathrm{Wu}$ and $B(I S 0)$ $=0.4 \mathrm{Wu}$, which are close to the results of the full model space calculation listed in Table 1.

Thus, there is an interesting relationship between the monopole transition and LACM. In ${ }^{40} \mathrm{Mg}$, the prolate and oblate rotors coexist, and the monopole transition is hindered as they do not mix with each other. In ${ }^{44} \mathrm{~S}$, there is a considerable mixture of prolate and oblate shapes due to LACM. This leads to the nonnegligible monopole transition, which is roughly proportional to the difference in the squared-radii of the two shapes.

References

1) O. Sorlin et al., Prog. Part. Nucl. Phys. 61, 602 (2008).
2) S. Takeuchi et al., Phys. Rev. Lett. 109, 182501 (2012).
3) Y. Suzuki et al., Phys. Rev. C 104, 024327 (2021).
4) Y. Suzuki et al., Prog. Theor. Exp. Phys. 2022, 063D02 (2022).
5) S. Grévy et al., Eur. Phys. J. A 25, 111 (2005).
6) S. Shimoura et al., Phys. Lett. B 654, 87 (2007).

[^0]: \dagger Condensed from the article in Phys. Rev. C 104, 024327 (2021) and Prog. Theor. Exp. Phys. 2022, 063D02 (2022)
 *1 Research Center for Nuclear Physics, Osaka University
 *2 Department of Physics, Osaka Metropolitan University
 *3 Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), Osaka Metropolitan University
 *4 Department of Physics, Hokkaido University
 *5 RIKEN Nishina Center

