Isoscaling in central Sn + Sn collisions at 270 MeV/nucleon[†]

J. W. Lee,^{*1} M. B. Tsang,^{*2,*3} C. Y. Tsang,^{*2,*3} R. Wang,^{*2} J. Barney,^{*2,*3} J. Estee,^{*2,*3} T. Isobe,^{*4}
M. Kaneko,^{*4,*5} M. Kurata-Nishimura,^{*4} W. G. Lynch,^{*2,*3} T. Murakami,^{*4,*5} A. Ono,^{*6} S. R. Souza,^{*7,*8}
D. S. Ahn,^{*4} L. Atar,^{*9,*10} T. Aumann,^{*9,*10} H. Baba,^{*4} K. Boretzky,^{*10} J. Brzychczyk,^{*11} G. Cerizza,^{*2}
N. Chiga,^{*4} N. Fukuda,^{*4} I. Gasparic,^{*12,*4,*9} B. Hong,^{*1} A. Horvat,^{*9,*10} K. Ieki,^{*13} N. Ikeno,^{*14} N. Inabe,^{*4}
G. Jhang,^{*2} Y. J. Kim,^{*15} T. Kobayashi,^{*6,*4} Y. Kondo,^{*16,*4} P. Lasko,^{*17} H. S. Lee,^{*15} Y. Leifels,^{*10} J. Łukasik,^{*17}
J. Manfredi,^{*2,*3} A. B. McIntosh,^{*18} P. Morfouace,^{*2} T. Nakamura,^{*16,*4} N. Nakatsuka,^{*4,*5} S. Nishimura,^{*4}
H. Otsu,^{*4} P. Pawłowski,^{*17} K. Pelczar,^{*11} D. Rossi,^{*9} H. Sakurai,^{*4} C. Santamaria,^{*2} H. Sato,^{*4} H. Scheit,^{*9}
R. Shane,^{*2} Y. Shimizu,^{*4} H. Simon,^{*10} A. Snoch,^{*19} A. Sochocka,^{*11} T. Sumikama,^{*4} H. Suzuki,^{*4} D. Suzuki,^{*4}
H. Takeda,^{*4} S. Tangwancharoen,^{*2} Y. Togano,^{*13,*4} Z. G. Xiao,^{*20} S. J. Yennello,^{*18,*21} and Y. Zhang^{*20}

Experimental study on the early stage of heavy-ion collision is challenging as excited fragments produced from the collision decay into lighter particles before they are detected. The nuclear isoscaling phenomenon is a useful tool as the ratio of yields from two different reactions is weakly affected by the fragment de-excitation $process.^{1)}$

Rare isotope Tin beams ¹³²Sn and ¹⁰⁸Sn were produced from RIBF and impinged onto the isotopically enriched Tin targets. Hydrogen and helium isotopes were detected in $S\pi RIT$ time projection chamber²) placed inside the SAMRURAI dipole magnet.³⁾ Particles were identified from the magnetic rigidity and mean energy $loss.^{4}$ Most central events with impact parameter b < b1.5 fm and mid rapidity range $y_0 = 0-0.4$ are chosen for this analysis.

The yield ratios between two systems $R_{21} = Y(^{132}Sn + ^{124}Sn)/Y(^{108}Sn + ^{112}Sn)$ as a function of p_T/A are shown in Fig. 1. Given that the collision systems are thermally equilibrated, R_{21} follow the isoscaling law $R_{21} = C \exp(\alpha N + \beta Z)$ where α and β are the fit parameters. Empirically, α and β have similar values with opposite signs, therefore, particles with the same (N-Z)value show similar R_{21} values. Figure 1 show isoscaling effect for $p_{\rm T}$ < 280 MeV/c (left side of vertical dashed line). In this region, the isoscaling fit gives $\alpha = 0.29$ and

- † Condensed from the article in Eur. Phys. J. A 58, 201 (2022)
- *1 Department of Physics, Korea University
- *2 Facility for Rare Isotope Beams, Michigan State University
- *3 Department of Physics, Michigan State University
- *4**RIKEN** Nishina Center
- *5Department of Physics, Kyoto University
- *6Department of Physics, Tohoku University
- *7 Instituto de Física, Universidade Federal do Rio de Janeiro *8 Departamento de Engenharia Nuclear, Universidade Federal de Minas Gerais
- *9 Institut für Kernphysik, Technische Universität Darmstadt
- *10GSI Helmholtzzentrum für Schwerionenforschung GmbH
- $^{\ast 11}$ Faculty of Physics, Jagiellonian University
- *12 Division of Experimental Physics, Rudjer Boskovic Institute
- *¹³ Department of Physics, Rikkyo University
- *¹⁴ Department of Life and Environmental Agricultural Sciences, Tottori University
- $^{\ast 15}$ Rare Isotope Science Project, Institute for Basic Science
- *¹⁶ Department of Physics, Tokyo Institute of Technology
- $^{\ast 17}$ Institute of Nuclear Physics PAN
- $^{\ast 18}$ Cyclotron Institute, Texas A&M University
- ^{*19} Nikhef National Institute for Subatomic Physics
- *²⁰ Department of Physics, Tsinghua University
- *²¹ Department of Chemistry, Texas A&M University

 R_{21} $\alpha = 0.29$ R_{21} 0 - 0.4= -0.23 280 MeV/c N ⁴He d 'He Exp. 4 AMD ** 0.5100 200 300 400 500 600 $p_{\rm T}/{\rm A}$ (MeV/c)

Fig. 1. The yield ratio R_{21} between two systems $^{132}Sn +$ 124 Sn and 108 Sn + 112 Sn. Experimental data (markers) are compared with AMD (shaded area). Inner panel: Isoscaling fit for $p_{\rm T}/A < 280 {\rm MeV}/c$.

 $\beta = -0.23$ (inner panel of Fig. 1). On the other hand, the triton and helium R_{21} values breakdown above this limit, and the isoscaling phenomenon vanishes. This suggests that high $p_{\rm T}/A$ particles come from the nonequilibrated environment.

The antisymmetrized molecular dynamics (AMD) model^{5,6)} is employed with Skyrme SLv4 effective interaction and symmetry energy slope parameter L =46 MeV. The AMD result qualitatively explains isoscaling for $p_{\rm T}/A < 280$ even though AMD is a dynamical model. However, AMD underestimate triton R_{21} and do not reproduce breakdown of R_{21} .

References

- 1) M. B. Tsang et al., Phys. Rev. C 64, 054615 (2001).
- 2) J. Barney et al., Rev. Sci. Instrum. 92, 063302 (2021).
- 3) H. Otsu et al., Nucl. Instrum. Methods Phys. Res. B 376, 175 (2016).
- 4) J. W. Lee et al., Nucl. Instrum. Methods Phys. Res. A **965**, 163840 (2020).
- 5) A. Ono, Prog. Part. Nucl. Phys. 105, 139 (2019).
- 6) M. Kaneko et al., Phys. Lett. B 822, 136681 (2021).