Various nuclear structures in ¹⁴⁰Xe studied by β decay of ground and isomeric states in ¹⁴⁰I[†]

A. Yagi,^{*1,*2} A. Odahara,^{*1} H. Nishibata,^{*1,*2,*3} R. Lozeva,^{*4,*5} C. -B. Moon,^{*6,*7} S. Nishimura,^{*2} K. Yoshida,^{*8} and N. Yoshinaga^{*9} for the EURICA Collaboration

Nuclear-shape transition with the increase of neutron and/or proton numbers is one of the most important subjects to disentangle competition between single-particle and collective structures in the finite quantum many-body system. The neutron-rich N = 86 isotope ¹⁴⁰Xe, located northeast of a doubly-magic nucleus ¹³²Sn, was investigated by β - γ spectroscopy, as one of experiments in the Euroball RIKEN Cluster Array (EURICA) project.^{1,2})

Neutron-rich Sb, Te, I, Xe, and Cs isotopes with $A \sim 140$ were produced by in-flight fission of a 345-MeV/nucleon ²³⁸U beam with an average intensity of 5 particle nA. These isotopes were transported based on in-flight separation technique by using BigRIPS separator and ZeroDegree spectrometer³⁾ up to the last focal plane (F11) with setting magnetic rigidity $(B\rho)$ for ¹⁴²Te⁵²⁺. The isotopes were implanted into a position sensitive active stopper, Wide-range Active Silicon Strip Stopper Array for Beta and Ion detection (WAS3ABi), which consists of five double-sided Si strip detectors (DSSSDs). In addition, the WAS3ABi was used as a β counter. Parent β -decaying nuclei were identified by position correlation of the implanted fragments with information of particle identification (PI) and the detected β rays in WAS3ABi. Gamma rays emitted after the β decay were detected by a γ ray detector array, EURICA, which consists of twelve cluster-type high-purity Ge detectors with seven crystals. To study the β decay of ¹⁴⁰I in this work, two data sets with PI of hydrogen-like $^{140}\mathrm{I}^{52+}$ and fully stripped $^{140}\text{Te}^{52+}$ were analyzed. Namely, the parent nucleus ¹⁴⁰I was produced by two different reactions of (i) direct in-flight fission at primary target and (ii) β decay of ¹⁴⁰Te inside WAS3ABi. Relative intensity of γ ray was obtained by using γ -ray photo-peak efficiency, which was simulated using the Geant4 code for the EURICA Ge array with distribution of the 140 I and ¹⁴⁰Te particles on five DSSSD detectors in WAS3ABi.

Two β -decay isomers in ¹⁴⁰I are newly found in the study of two different β decays of ¹⁴⁰I with PI of ¹⁴⁰I

- *³ Department of Physics, Kyushu University
 *⁴ IPHC CNRS IN2P3 and University of Strashou
- ^{*4} IPHC, CNRS, IN2P3 and University of Strasbourg
 ^{*5} Université Paris-Saclay, LICLab, CNRS/IN2P3
- *5 Université Paris-Saclay, IJCLab, CNRS/IN2P3
 *6 Department of Display Engineering, Hoseo Univ
- *6 Department of Display Engineering, Hoseo University
 *7 Center for Exotic Nuclear Studies, Institute for Basic Science
- *8 Department of Physics, Kyoto University
- *9 Department of Physics, Saitama University

 $(^{140}I \rightarrow ^{140}Xe)$ and $^{140}Te (^{140}Te \rightarrow ^{140}I \rightarrow ^{140}Xe)$. Half-lives of the β decays of the ground state (g.s.), low-spin isomer (LSI), and high-spin isomer (HSI) are determined to be 0.38(2), 0.91(5), and 0.47(4) sec, respectively, by the analysis of time-difference (implanted particle and β -decay event) spectra gated by the γ rays in ^{140}Xe . Decay schemes of the β decay of the HSI and of the mixed β decays of the g.s. and the LSI in ^{140}I to ^{140}Xe are constructed using the information on γ -ray coincidence relation and γ -ray intensity.

Nuclear structures of the low-lying states in 140 Xe are compared between the experimental results and two theoretical calculations based on the largescale shell model and the deformed Skyrme Hartree-Fock-Bogoliubov (HFB) plus deformed quasiparticlerandom-phase approximation (QRPA), as shown in Fig. 1. Low-lying states can be classified into (a) g.s. band, (b) (quasi-) γ -band, and (c) octupole collective states. Possible candidates for the (quasi-) γ -band members of 2^+ and 4^+ and the octupole collective $1^$ state are proposed in ¹⁴⁰Xe. This work demonstrates that in the low-lying states of ¹⁴⁰Xe, coexistence of nuclear structures, such as vibrational nature with prolate collectivity, large- γ collectivity (γ softness), and octupole-vibrational nature, could appear due to four valence protons and four valence neutrons being coupled to the doubly-magic nucleus 132 Sn.

Fig. 1. Experimental low-lying states are compared to those calculated in the shell model and the deformed Skyrme-HFB + QRPA (SkM*).

References

- S. Nishimura, Prog. Theor. Exp. Phys. **2012**, 03C006 (2012).
- P. -A. Söderström *et al.*, Nucl. Instrum. Methods Phys. Res. B **317**, 649 (2013).
- T. Kubo *et al.*, Prog. Theor. Exp. Phys. **2012**, 03C003 (2012).

 $^{^\}dagger$ Condensed from the article in Phys. Rev. C 105, 044325 (2022)

^{*1} Department of Physics, Osaka University

^{*&}lt;sup>2</sup> RIKEN Nishina Center *³ Department of Physica