β -delayed one and two neutron emission probabilities south-east of $^{132}\mathrm{Sn}$ and the odd-even distribution of the $r\text{-}\mathrm{process}$ abundances †

V. H. Phong,^{*1,*2} S. Nishimura,^{*1} G. Lorusso,^{*1,*3,*4} T. Davinson,^{*5} A. Estrade,^{*6} O. Hall,^{*5} T. Kawano,^{*7}

J. Liu,^{*1,*8} F. Montes,^{*9} N. Nishimura,^{*1,*10} R. Grzywacz,^{*11} K. P. Rykaczewski,^{*12} J. Agramunt,^{*13}
D. S. Ahn,^{*1,*14} A. Algora,^{*13,*25} J. M. Allmond,^{*12} H. Baba,^{*1} S. Bae,^{*14} N. T. Brewer,^{*11,*12} C. G. Bruno,^{*5}

R. Caballero-Folch,^{*15} F. Calviño,^{*16} P. J. Coleman-Smith,^{*17} G. Cortes,^{*16} I. Dillmann,^{*15,*18}

K. Cabahero-Folch, ¹⁰ F. Calvino, ¹⁰ F. J. Coleman-Smith, ¹¹ G. Cortes, ¹⁰ I. Dilmann, ^{10,10} C. Domingo-Pardo, ¹³ A. Fijalkowska, ¹⁹ N. Fukuda, ¹ S. Go, ¹ C. J. Griffin, ^{*5} J. Ha, ^{*1,*20} L. J. Harkness-Brennan, ^{*21} T. Isobe, ^{*1} D. Kahl, ^{*5,*22} L. H. Khiem, ^{*23,*24} G. G. Kiss, ^{*1,*25} A. Korgul, ^{*19} S. Kubono, ^{*1} M. Labiche, ^{*17} I. Lazarus, ^{*17} J. Liang, ^{*26} Z. Liu, ^{*27,*28} K. Matsui, ^{*1,*29} K. Miernik, ^{*19} B. Moon, ^{*14} A. I. Morales, ^{*13} P. Morrall, ^{*17} N. Nepal, ^{*6} R. D. Page, ^{*21} M. Piersa-Siłkowska, ^{*19} V. F. E. Pucknell, ^{*17} B. C. Rasco, ^{*12} B. Rubio, ^{*13} H. Sakurai, ^{*1,*29} Y. Shimizu, ^{*1} D. W. Stracener, ^{*12} T. Sumikama, ^{*1} H. Suzuki, ^{*1}

J. L. Tain,^{*13} H. Takeda,^{*1} A. Tarifeño-Saldivia,^{*13,*16} A. Tolosa-Delgado,^{*13} M. Wolińska-Cichocka,^{*30}

P. J. Woods,^{*5} and R. Yokoyama^{*11,*31}

The nucleosynthesis of elements around the second rprocess abundance peak has attracted considerable interest recently, with metal-poor star observations of elemental and isotopic abundances^{1,2)} providing important clues on the sensitivity of the peak to the r-process environments. To connect such observations to the astrophysical models and ultimately derive the r-process conditions, knowledge of the nuclear properties of the second *r*-process peak radioactive progenitors is essential.

After r-process freezeout, final r-process abundances of the second peak originate from a network of compet-

Condensed from the article in Phys. Rev. Lett. 129, 172701 (2022)

- *2 Vietnam National University, Hanoi
- *3 National Physical Laboratory, Teddington
- *4 Department of Physics, University of Surrey
- *5 School of Physics and Astronomy, University of Edinburgh
- *6 Department of Physics, Central Michigan University
- *7 Theoretical Division, Los Alamos National Laboratory
- *8 Department of Physics, University of Hong Kong
- *9 National Superconducting Cyclotron Laboratory
- *10Astrophysical Big-Bang Laboratory
- *¹¹ University of Tennessee, Knoxville
- *¹² Physics Division, Oak Ridge National Laboratory
- $^{\ast 13}$ Instituto de Física Corpuscular, CSIC-University of Valencia
- $^{\ast 14}$ Center for Exotic Nuclear Studies, Institute for Basic Science
- $^{\ast 15}$ TRIUMF, Vancouver
- $^{\ast 16}$ Universitat Politecnica de Catalunyan
- *17STFC Daresbury Laboratory
- $^{\ast 18}\,$ Department of Physics and Astronomy, University of Victoria ^{*19} Faculty of Physics, University of Warsaw
- *²⁰ Department of Physics and Astronomy, Seoul National Universitv
- *²¹ Department of Physics, University of Liverpool
- *22Extreme Light Infrastructure - Nuclear Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering
- *23 Institute of Physics, VAST
- $^{\ast 24}$ Graduate University of Science and Technology, VAST
- *25 Institute for Nuclear Research (ATOMKI)
- $^{\ast 26}$ Department of Physics and Astronomy, McMaster University
- *27 Institute of Modern Physics, Chinese Academy of Sciences
- *²⁸ School of Nuclear Science and Technology, University of Chinese Academy of Sciences
- *29 Department of Physics, University of Tokyo
- $^{\ast 30}$ Heavy Ion Laboratory, University of Warsaw
- *³¹ Center for Nuclear Study, University of Tokyo

ing reactions including the neutron capture, photodisintegration, fission contribution and β -delayed neutron emission. The latter has been the main focus of our experiment carried out within the BRIKEN project³⁾ at RIBF, where β -delayed one and two neutron emission probabilities $(P_{1n} \text{ and } P_{2n})$ of neutron-rich nuclei south-east of ¹³²Sn have been measured. The systematic of the measured P_{1n} and P_{2n} values, shown in Fig. 1, highlighted the nuclear shell effects around doubly-magic ¹³²Sn. Our results also provided important benchmarks for the recent macroscopic-microscopic and self-consistent global model, including the statistical treatment of neutron and γ emission.^{4,5)} Direct impacts of the measured P_{1n} and P_{2n} on the odd-even staggering of the final r-process abundance around the second r-process peak were demonstrated. The observed oddmass isotopic fractions of Ba in metal-poor stars²) were found to be better reproduced by using our data.

Fig. 1. Systematics of measured P_{1n} (top panels) and P_{2n} compared with theoretical calculations. $^{4,5)}$

References

- 1) I. U. Roederer et al., Astrophys. J. Suppl. Ser. 260, 27 (2022).
- 2) C. Wenyuan et al., Astrophys. J. 854, 131 (2018).
- 3) I. Dillmann et al., Nucl. Phys. News 28, 28 (2018).
- 4) T. Kawano et al., Phys. Rev. C 78, 054601 (2008).
- 5) F. Minato et al., Phys. Rev. C 104, 044321 (2021).

^{*1} **RIKEN** Nishina Center