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Twelfth-order QED contributions to the muon g−2
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The anomalous magnetic moment of the muon, aµ ≡
(gµ − 2)/2, has occupied a central role in testing the
validity of the standard model of elementary parti-
cles (SM). The new measurement of aµ at Fermilab1)

is consistent with that at Brookhaven,2) and the long-
standing tension between experiment and theory re-
mains unresolved. The average of the two experiments
and the SM prediction3) are given as

aµ(Exp) = 116 592 061 (41)× 10−11, (1)

aµ(SM) = 116 591 810 (43)× 10−11, (2)

respectively, and the difference is (251 ± 59) × 10−11

corresponding to 4.2 σ.
The theoretical prediction of aµ has been calculated

by considering all three forces of SM. The contribution
from the quantum electrodynamics (QED) is dominant
and has been determined up to the tenth order of the
perturbation theory. It has been considered sufficiently
well known as its uncertainty is 1.0 × 10−12. The as-
signed uncertainty was derived from the rough estimate
of the leading-order contribution of the twelfth-order
term. Recently, we have calculated, not guessed, the
two types of Feynman diagrams shown in Fig. 1 that
are supposed to give the leading contributions in the
twelfth order.

Fig. 1. Some Feynman vertex diagrams of the twelfth-order

QED containing light-by-light scattering subdiagrams.

Because the muon is about two hundred times heav-
ier than the electron, enhancement factors arise in some
QED contributions to aµ. One famous origin of the
enhancement is a light-by-light scattering vertex dia-
gram (LL6), in which an external magnetic photon is
attached to an electron loop. Another is a vacuum-
polarization subdiagram (VP) consisting of an electron
loop. The left diagram of Fig. 1 is a combination of
two enhancement mechanisms of the twelfth order of
the QED perturbation theory. We have calculated its
numerical contribution taking into account all possible
insertions of three second-order VPs (P2s) to LL6. In
addition, diagrams with insertions of one fourth-order
VP (P4) and two P2s to LL6 were calculated. The co-
efficients of (α/π)6, where α is the fine-structure con-
stant, are obtained as follows:
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a(12)µ [LL6(e) P2(e)P2(e)P2(e)] = 2415.256 (53), (3)

a(12)µ [LL6(e) P2(µ)P2(e)P2(e)] = 367.974 (15), (4)

a(12)µ [LL6(e) P4(e)P2(e)] = 1451.106 (91), (5)

where a superscript (e) or (µ) of LL6, P2, or P4 in-
dicates a species of its fermion loop. The sum of the
three gives the leading contribution of the twelfth-order
QED:
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)6

× 4230 = 0.665× 10−12 . (6)

It is within the uncertainty assigned to the QED con-
tribution to aµ.

A new enhancement mechanism appears at the
twelfth order. The right diagram of Fig. 1 (LL6 LL6)
contains a “child” LL6 as a subdiagram. When the
mass of an external fermion is much heavier than that
of a loop fermion, the slope of F1 form factor of LL6
has a large enhancement factor4)
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It is uncertain that such a critical enhancement fac-
tor exists in the LL6 LL6 contribution to aµ. Therefore,
we calculated LL6 LL6 without any approximation ex-
cept for numerical integration. The 360 Feynman ver-
tex diagrams of the gauge-invariant set LL6 LL6 can
be reduced to sixteen independent integrals. Each of
the integrands consists of about 50 MByte text files. In
principle, no renormalization is required for LL6 LL6.
However, to conduct numerical integration, an inte-
grand needs ultra-violet (UV) counter terms that cancel
the UV divergences of a child LL6 vertex subdiagram
and a light-by-light scattering subdiagram (LL). The
UV counter terms we constructed are the form factor
F1(0) for a child LL6 and the light-by-light scattering
tensor Πµνρσ(0, 0, 0, 0) for a LL. The sum of the UV
counter terms exactly vanishes when all gauge-invariant
diagrams are summed up. The numerical calculation
has been performed, and the result will be reported
elsewhere.
Numerical calculations were conducted on RIKEN’s

supercomputer HOKUSAI BigWaterfall. This work
was partly supported by KAKENHI 16K05338,
20H05646, and 22K03646.
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