Indication of α clustering in the density profiles of $^{44,52}\text{Ti}^{\dagger}$

W. Horiuchi *1,*2,*3,*4 and N. Itagaki *1,*2

The standard nuclear structure is shell structure; however, α -cluster structure often appears in the ground and excited states of light nuclei. Here, we discuss the α cluster structure in medium mass nuclei, ⁴⁴Ti and ⁵²Ti, and show that the development of core+ α structure can be quantified in the density profiles near the nuclear surface using proton-nucleus elastic scattering.

In the present study, we examine two different density profiles. Shell- and α -cluster configurations are generated by utilizing the basis states of the antisymmetrized quasi-cluster model (AQCM),¹⁾ which can describe both the *j*-*j* coupling shell and α -cluster configurations in a single scheme. The AQCM basis for the core (⁴⁰Ca or ⁴⁸Ca) plus α cluster is expressed by the antisymmetrized product of the core and α -cluster wave functions, with *R* being their distance. The wave function of the core nucleus is constructed based on the multi- α cluster model at the zero-distance limit, corresponding to the N = 20closure for ⁴⁰Ca and eight neutrons are additionally put for the N = 28 closure of ⁴⁸Ca. The size parameters of the core and α -cluster wave functions are taken as the same for simplicity.

The shell-model wave functions for $^{44, 52}$ Ti are obtained by taking $R \rightarrow 0$. The size parameter is fixed to reproduce the measured charge radius of 44 Ti or 52 Ti. We call this shell-model wave function as S-type.

For the α -cluster wave function, we determine the size parameter to reproduce the measured charge radius of the core nucleus and set the R value to reproduce the charge radius of ⁴⁴Ti or ⁵²Ti. We call this α -cluster wave function as C-type. The determined R value is large (2.85 fm) for ⁴⁴Ti, indicating a well-developed α -cluster structure. The charge radius of ⁵²Ti is not known. However, to understand the role of excess neutrons, we assume R = 3 fm for ⁵²Ti, which is comparable to that of ⁴⁴Ti.

Although both S- and C-types reproduce the charge radius data, we discover that α clustering significantly changes the density profiles near the surface. To quantify these changes, we evaluate the nuclear "diffuseness,"²⁾ which is practically obtained by a twoparameter Fermi function, $\rho_0/\{1+\exp[(r-\bar{R})/a]\}$, where the radius (\bar{R}) and diffuseness (a) parameters are determined by the least-square fitting with the obtained one-body density. The a values for S- and C-types are 0.56 fm and 0.63 fm for ⁴⁴Ti and 0.58 fm and 0.61 fm for ⁵²Ti, respectively. The α clustering significantly changes the nuclear surface diffuseness, especially for ⁴⁴Ti, owing to the occupation of the diffused low-angular momentum orbit, *i.e.*, 1*p* orbit. For ⁵²Ti, the difference between Sand C-types is less significant that of ⁴⁴Ti because the shell-model configuration $(1p_{3/2})^4$ already has a diffused nuclear surface.

We show that this difference can be detected by measuring proton-nucleus elastic scattering at intermediate energies. The proton-nucleus differential elastic scattering cross sections are calculated by the optical-limit approximation in the Glauber model. Inputs to the reaction model are one-body density distributions and profile function. By using the standard profile function, we confirm that the theory reproduces the experimental cross sections for ⁴⁰Ca and ⁴⁸Ca using the wave functions obtained by the AQCM approach without introducing any adjustable parameter.

Figure 1 plots the proton-nucleus differential elastic scattering cross sections at 320 MeV/nucleon at around the first peak position, where the difference of the nuclear diffuseness is well reflected.²⁾ For ⁴⁴Ti, we see that the difference between the S- and C-type cross sections is large, considering that the uncertainties of the experimental proton-⁴⁰Ca cross sections at around the first peak position is only $\approx 4\%$.³⁾ The difference is smaller for ⁵²Ti, but it is significant.

Fig. 1. Proton-^{44, 52}Ti differential elastic scattering cross sections at 320 MeV/nucleon for scattering angles near the first peak position.

In summary, we have investigated the density profiles of ⁴⁴Ti and ⁵²Ti with the shell and α -cluster configurations and found that these two aspects can be distinguished by measuring the proton-nucleus differential elastic scattering cross sections up to the first peak position.

References

- 1) N. Itagaki et al., Phys. Rev. C 71, 064307 (2005).
- 2) S. Hatakeyama et al., Phys. Rev. C 97, 054607 (2018).
- 3) J. J. Kelly *et al.*, Phys. Rev. C 44, 2602 (1991).

 $^{^\}dagger$ Condensed from the article in Phys. Rev. C 106, 044330 (2022)

^{*1} Department of Physics, Osaka Metropolitan University
*2 Nomby Vaiabing Institute of Theoretical and Europic

 ^{*2} Nambu Yoichiro Institute of Theoretial and Experimental Physics, Osaka Metropolitan University
 *3 RIKEN Niching Contor

^{*&}lt;sup>3</sup> RIKEN Nishina Center

^{*4} Department of Physics, Hokkaido University