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Microscopic collective inertial masses for nuclear reactions in the
presence of the nucleonic effective mass'
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A theoretical description of low-energy nuclear re-
actions with a solid microscopic foundation is still a
challenging subject in nuclear physics. It may provide
us with a deep insight into the reaction mechanisms
and quantum dynamics of many-nucleon systems. Our
strategy is as follows. First, we find a collective sub-
space spanned by a few selected collective canonical
variables, which is decoupled from the intrinsic excita-
tions. The collective subspace and collective variables
can be extracted using the adiabatic self-consistent col-
lective coordinate (ASCC) method.)) The collective
subspace in the adiabatic regime is given by a series
of time-even Slater determinants and generators of the
collective coordinates and momenta locally defined for
each state. We apply the method to low-energy nuclear
reactions, to identify the optimal reaction path and
canonical variables. The self-consistently determined
collective reaction path is requantized. The procedure
results in the reaction model
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where R is the relative distance between the projec-
tile and the target nuclei. The wave function for the
relative motion is given by ¥(R) = u;(R)Y;m(R)/R.

The key ingredients of the requantization procedure
are the potential V(R), the inertial mass parameters
with respect to the collective coordinates M(R), and
the rotational moment of inertia J(R) in Eq. (1). For
the nuclear reaction, the relative distance R between
two colliding nuclei should be properly chosen collec-
tive coordinates in the asymptotic region (R — o).
The corresponding inertial mass should be the reduced
mass fiyed = ApArm/(Ap+Ar), where Ap (Ar) is the
mass number of the projectile (target) nucleus and m is
the bare nucleon mass. The moment of inertia J(R) in
Eq. (1) also has an asymptotic value, J(R) — fireq R?
at R — oo. Therefore, the theory can be tested by
examining its asymptotic limit. However, the inertial
masses in the interior region where two nuclei touch
each other are highly nontrivial. Thus, a microscopic
theory for calculating the mass over the entire reaction
path is necessary.

In our previous studies,? we calculated the ASCC
inertial masses for the relative motion between two
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nuclei for the velocity-independent mean-field poten-
tial. We also examined those of the cranking formula,
which turned out to be almost identical to the ASCC
mass at R — oo. However, this is not true in gen-
eral. In particular, the nonlocal mean-field potential
produces the effective mass m*/m < 1. In this case,
in order to guarantee the Galilean invariance of the
energy density functional, we need densities that are
time-odd with respect to the time-reversal transforma-
tion. The time-odd mean fields play important roles
in the time-dependent dynamics because the time-odd
densities are nonzero in general for the time-dependent
states. Since the ASCC equations are derived from
the time-dependent mean-field theory, they are able
to take into account the effects of the time-odd mean
fields in calculations of the inertial masses. We have
found that the ASCC inertial masses reproduce the
correct asymptotic values, whereas the cranking for-
mula fails to do so.

Figure 1 shows the results for the moments of iner-
tia J(R). The velocity dependence in the mean-field
potential violates the local Galilean invariance. The
calculated cranking moments of inertia (dashed line)
are significantly smaller than the rigid-body value J,ig
(dotted line). They are also smaller than the point-
particle value pyeqR? (dash-dot line) at large R. In
contrast, the ASCC calculation (solid) includes the
residual effects of the time-odd mean fields, which re-
store the local Galilean invariance, nicely reproducing
MrcdR2 at R > 7.5 fm. Near the equilibrium state
(R ~ 5.5 fm), it also reproduces the rigid-body value.
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Fig. 1. Rotational moments of inertia as a function of the
relative distance R for **0O-+160. See text for details.
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