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Microscopic collective inertial masses for nuclear reactions in the
presence of the nucleonic effective mass†

K. Wen∗1 and T. Nakatsukasa∗1,∗2

A theoretical description of low-energy nuclear re-
actions with a solid microscopic foundation is still a
challenging subject in nuclear physics. It may provide
us with a deep insight into the reaction mechanisms
and quantum dynamics of many-nucleon systems. Our
strategy is as follows. First, we find a collective sub-
space spanned by a few selected collective canonical
variables, which is decoupled from the intrinsic excita-
tions. The collective subspace and collective variables
can be extracted using the adiabatic self-consistent col-
lective coordinate (ASCC) method.1) The collective
subspace in the adiabatic regime is given by a series
of time-even Slater determinants and generators of the
collective coordinates and momenta locally defined for
each state. We apply the method to low-energy nuclear
reactions, to identify the optimal reaction path and
canonical variables. The self-consistently determined
collective reaction path is requantized. The procedure
results in the reaction model
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where R is the relative distance between the projec-
tile and the target nuclei. The wave function for the
relative motion is given by ψ(R) = ul(R)Ylm(R̂)/R.
The key ingredients of the requantization procedure

are the potential V (R), the inertial mass parameters
with respect to the collective coordinates M(R), and
the rotational moment of inertia J (R) in Eq. (1). For
the nuclear reaction, the relative distance R between
two colliding nuclei should be properly chosen collec-
tive coordinates in the asymptotic region (R → ∞).
The corresponding inertial mass should be the reduced
mass µred = APATm/(AP+AT ), where AP (AT ) is the
mass number of the projectile (target) nucleus and m is
the bare nucleon mass. The moment of inertia J (R) in
Eq. (1) also has an asymptotic value, J (R) → µredR

2

at R → ∞. Therefore, the theory can be tested by
examining its asymptotic limit. However, the inertial
masses in the interior region where two nuclei touch
each other are highly nontrivial. Thus, a microscopic
theory for calculating the mass over the entire reaction
path is necessary.
In our previous studies,2) we calculated the ASCC

inertial masses for the relative motion between two
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nuclei for the velocity-independent mean-field poten-
tial. We also examined those of the cranking formula,
which turned out to be almost identical to the ASCC
mass at R → ∞. However, this is not true in gen-
eral. In particular, the nonlocal mean-field potential
produces the effective mass m∗/m < 1. In this case,
in order to guarantee the Galilean invariance of the
energy density functional, we need densities that are
time-odd with respect to the time-reversal transforma-
tion. The time-odd mean fields play important roles
in the time-dependent dynamics because the time-odd
densities are nonzero in general for the time-dependent
states. Since the ASCC equations are derived from
the time-dependent mean-field theory, they are able
to take into account the effects of the time-odd mean
fields in calculations of the inertial masses. We have
found that the ASCC inertial masses reproduce the
correct asymptotic values, whereas the cranking for-
mula fails to do so.
Figure 1 shows the results for the moments of iner-

tia J (R). The velocity dependence in the mean-field
potential violates the local Galilean invariance. The
calculated cranking moments of inertia (dashed line)
are significantly smaller than the rigid-body value Jrig

(dotted line). They are also smaller than the point-
particle value µredR

2 (dash-dot line) at large R. In
contrast, the ASCC calculation (solid) includes the
residual effects of the time-odd mean fields, which re-
store the local Galilean invariance, nicely reproducing
µredR

2 at R > 7.5 fm. Near the equilibrium state
(R ∼ 5.5 fm), it also reproduces the rigid-body value.
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Fig. 1. Rotational moments of inertia as a function of the

relative distance R for 16O+16O. See text for details.
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