Momentum-space structure of dineutron in ¹¹Li[†]

M. Yamagami *1

A recent knockout-reaction experiment for the Borromean nucleus ¹¹Li measured the mean correlation angle between the momenta of emitted neutrons n_1 and n_2 in the reaction channel ¹¹Li $(p, pn_1)^{10}$ Li^{*} \rightarrow ⁹Li + n_2 .¹⁾ The dependence on the missing momentum k of n_1 is considered to reflect the spatial structure of dineutron.

Here, the reflection of the spatial structure of dineutron to the mean opening angle between the momenta \mathbf{k}_1 and \mathbf{k}_2 of the valence neutrons at the ground state of ¹¹Li is discussed. Further, the similarities with the mean correlation angle are highlighted.

A three-body model calculation is performed in the momentum space using a finite-range n-n interaction, which reproduces the two-neutron (2n) separation energy and the matter radius of ¹¹Li. Further, the 2n density, $\rho_2(k_1, k_2, \theta_k)$, is calculated using $k_1 = |\mathbf{k}_1|$, $k_2 = |\mathbf{k}_2|$, and the opening angle between \mathbf{k}_1 and \mathbf{k}_2 , θ_k . Figure 1(a) shows $\rho_2(k_1, k_2, \theta_k)$ as a function of both $k_1 = k_2 = k_n$ and θ_k . Figure 1(b) shows the 2n density in real space via the Fourier transformation, $\rho_2(r_1, r_2, \theta_r)$, using the radial coordinates, $r_1 = r_2 = r$, and opening angle, θ_r .

Fig. 1. (a) 2n density for ¹¹Li as functions of $k_1 = k_2 = k_n$ and the opening angle θ_k . It is weighted with a factor of $8\pi^2 k_n^4 \sin \theta_k$. (b) Same as (a) but 2n density in real space as functions of $r_1 = r_2 = r$ and the opening angle θ_r . It is weighted with a factor of $8\pi^2 r^4 \sin \theta_r$.

The dineutron configuration is obtained at the lowmomentum of $(k_n, \theta_k) = (0.18 \text{ fm}^{-1}, 128^\circ)$. It is accompanied by the broad angular distribution, and the long k_n -tail indicates the strong dineutron correlation (the high n-n relative momentum).

The mean opening angle $\langle \theta_k \rangle$ is defined as a function

of $k_1 = k_n$ as follows

$$\cos \left\langle \theta_k \right\rangle \equiv \left[\int_0^{k_{\text{cut}}} k_2^2 dk_2 \int_0^{\pi} 2\pi \sin \theta_k d\theta_k \right. \\ \left. \times \left. \rho_2(k_n, k_2, \theta_k) \cos \theta_k \right] / \rho_k(k_n), \tag{1}$$

where $\rho_k(k_n)$ is the one-neutron density distribution. Figure 2(a) shows $\langle \theta_k \rangle$ using the cutoff momenta of $k_{\text{cut}} = \infty$ (no cutoff) and $k_{\text{cut}} = k_{\text{surf}} = 0.62 \text{ fm}^{-1}$.

Fig. 2. (a) Mean opening angle $\langle \theta_k \rangle$ as a function of $k_1 = k_n$ for ¹¹Li. "Surface" indicates the cutoff of $k_{\text{cut}} = k_{\text{surf}}$. (b) Same as (a) but for ⁶He, ²²C, and ¹⁹B.

 $\langle \theta_k \rangle$ (no cutoff) exhibits a peak at $k_n = 0.27 \text{ fm}^{-1}$; however, it gradually increases above $k_n \approx 0.5 \text{ fm}^{-1}$.

 $k_{\rm surf}$ characterizes the low-momentum halo region by $k_1, k_2 < k_{\rm surf}$. $\langle \theta_k \rangle$ using $k_{\rm cut} = k_{\rm surf}$ exhibits a peak at $k_n = 0.31 \text{ fm}^{-1}$ and a plateau of $\langle \theta_k \rangle \approx 82^{\circ}$ above $k_n \approx 1.0 \text{ fm}^{-1}$. These features are consistent with the observed k dependence of the mean correlation angle (the peak at $k \approx 0.3 \text{ fm}^{-1}$ and the plateau of approximately 87° above $k \approx 0.9 \text{ fm}^{-1}$),¹⁾ which is considered to reflect the 2n correlations in the surface region.²⁾

In conclusion, the manner in which the mean opening angle reflects the 2n density in ¹¹Li was discussed. For $\langle \theta_k \rangle$, the importance of the surface effect and the similarities with the mean correlation angle in the knockout reaction were highlighted. The same conclusion was obtained for ⁶He, ²²C, and ¹⁹B (see Fig. 2(b)), wherein the measurement of the momentum dependence of the angular correlations between the halo neutrons can provide useful information on dineutron correlations at low density.

References

- 1) Y. Kubota et al., Phys. Rev. Lett. 125, 252501 (2020).
- 2) J. Casal et al., Phys. Rev. C 104, 024618 (2021).

 [†] Condensed from the article in Phys. Rev. C 106, 044316 (2022)
^{*1} Department of Computer Science and Engineering, University of Aizu