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26Si + α resonant scattering measurement to study 26Si(α, p)29P
reaction rate
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An X-ray burst can be characterized by a sudden
and intense release of X-ray radiation from a compact
stellar object such as a neutron star. A total energy
release of approximately 1039–40 ergs can be achieved
per burst in just a few seconds. It is believed that
the proton-rich nuclei up to the Sn-Sb-Te region can
be synthesized during the burst. To better understand
the X-ray bursts, studying the 26Si(α, p)29P reaction
is essential since 26Si is considered to be one of the
waiting points in the nucleosynthesis.
A sensitivity study, which identifies the important

nuclear reaction rates that affect the X-ray light curves
or ash composition, suggests that the 26Si(α, p)29P is
one of the impactful reactions to the light curve of
the X-ray burst.1) Despite its importance, the study of
26Si(α, p)29P is less understood experimentally. Thus
we have performed a 26Si + α experiment to mea-
sure the 26Si(α, p)29P reaction directly and the reso-
nant scattering to investigate resonances in 30S, which
can be populated in the 26Si(α, p)29P reaction as in-
termediate states. The result on the 26Si + α resonant
scattering is described in this report.
The 26Si + α resonant scattering was measured

at the Center for Nuclear Study Radioactive Ion
Beam Separator (CRIB)2) of the University of Tokyo.
The radioactive 26Si beam was produced at E =
2.14 MeV/nucleon through the 3He(24Mg,n)26Si reac-
tion by impinging 24Mg at E = 7.56 MeV/nucleon on
a cryogenic 3He gas target.3) The 26Si beam was sepa-
rated and purified by combining the magnetic analysis
and velocity selection with a double achromatic system
and a Wien filter. Two PPACs were located at the up-
stream of the reaction target for the event-by-event
monitoring of beam position and time-of-flight. The
typical 26Si beam intensity was 2.8 × 104 pps, and the
beam purity was ∼16%. The 26Si beam was impinged
on the 4He gas target with a pressure of 250 Torr. The
reaction target was kept at room temperature. The
thick target method is adopted for the experiment to
scan a wide excitation energy range in 30S.
The light charged particles were measured by sili-

con detector telescopes. Using four layers of silicon
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detectors (∆E1, ∆E2, E1, and E2 layer), each species
of charged particles could be easily identified. The
∆E1 and ∆E2 detectors are segmented into 16 strips
providing the horizontal and vertical position infor-
mation, respectively. The E1 and E2 detectors are
pad type silicon detectors. The scattering angle was
obtained based on the position information. To ob-
tain the excitation function of 26Si(α,α)26Si reaction,
the α energies were converted to the center-of-mass
energy by considering the kinematics of the reaction
and the energy loss of particles in the gas target. Fig-
ure 1 shows the excitation function obtained at θC.M.

= 174◦. Fitting the experimental excitation function
with the theoretical R-matrix calculations, we will ex-
tract resonance parameters of levels in the 30S, such as
excitation energy, spin, parity, and α partial width, to
constrain the 26Si(α, p)29P reaction rate.
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Fig. 1. Excitation function of 26Si + α elastic scattering at

θc.m. = 174◦
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