Nuclear Science and Transmutation Research Division Nuclear Transmutation Data Research Group

1. Abstract

The nuclear waste problem is an inevitable subject in nuclear physics and nuclear engineering communities. Since the Chicago Pile was established in 1942, nuclear energy has become one of major sources of energy. However, nowadays the nuclear waste produced at nuclear power plants has caused social problems. Minor actinide components of the waste have been studied well as a fuel in fast breeder reactors or ADS. Long-lived fission products (LLFP) in waste, on the other hand, have not been studied extensively. A deep geological disposal has been a policy of several governments, but it is difficult to find out location of the disposal station in terms of security, sociology and politics. To solve the social problem, a scientific effort is necessary for nuclear physics community to find out efficient methods for reduction of nuclear waste radioactivity. In the world-wide situation above, our Group aims to obtain reaction data of LLFP at RIBF and other muon facilities for muon capture data. These data are necessary to design an accelerator-based system for transmutation, and also may lead to a new discovery and invention for peaceful use of nuclear power and the welfare of humanity.

2. Major Research Subjects

The Group is formed by three research teams. The first two Teams, "Fast RI Data Team" and "Slow RI Data Team," are in charge of proton- and deuteron-induced reaction data of LLFP in inverse kinematics at RIBF. The third Team "Muon Data Team" is to obtain muon capture data of LLFP at muon facilities. All of the teams are focusing to obtain high-quality data which are essentially necessary to establish reliable reaction models. Each team has its own subjects and promotes LLFP reaction programs based on their large experiences, techniques and skills.

3. Summary of Research Activity

In 2014, all the teams polished up experimental strategies, formed collaboration and prepared experiments. Physics runs for spallation reaction were successfully organized at RIBF in 2015–2017. The muon program started at RCNP, Osaka University in spring 2016 and the data for Pd isotopes were successfully obtained in 2017–2019 via in-beam method with DC beams at RCNP, and via activation method with pulsed beams at J-PARC and ISIS-RAL/RIKEN facilities.

The reaction data obtained with both fast and energy-degraded beams at RIBF encouraged the nuclear data group of JAEA, and a new database called "JENDLE/ImPACT-2018" has been released. The new database has been generated by a newly developed reaction model "DEURACS" which treats deuteron-induced reactions. DEURACS reproduces very well cross section data, and much better than other reaction models. A simulation code "PHITS" has been re-coordianted to use the database information.

In December 2018, the Team leader, Hideaki Otsu, was invited to join Technical Meeting of IAEA, entitled "Novel Multidisciplinary Applications with Unstable Ion Beams and Complementary Techniques." Our activity has been demonstrated and recognized internationally. In November 2020, Hideaki Otsu organized a domestic conference entitled "RIKEN Symposium on Nuclear Data 2020."

At the end of fiscal year 2021, the spallation reaction data with ⁹⁹Tc beam was obtained and a secondary beam test for ²³⁷Np production was conducted. The data analysis is in progress.

Member Director Hiroyoshi SAKURAI

List of Presentation

Presentation

[Domestic Conference/Workshop]

櫻井博儀(招待講演),「核変換とミュオン」,日本中間子科学会「中間子科学の将来討論会」,和光市(理化学研究所),2022年11月.