Observation of ⁹Li + d decay channel in ¹¹Li(p, n) reaction

L. Stuhl, *1,*2,*3 M. Sasano,*3 J. Gao, *3,*4 Y. Hirai,*5 K. Yako,*2 T. Wakasa,*5 D. S. Ahn,*3 H. Baba,*3 L. Stuhl,^{*1,*2,*3} M. Sasano,^{*3} J. Gao,^{*3,*4} Y. Hirai,^{*3} K. Yako,^{*2} T. Wakasa,^{*5} D. S. Ahn,^{*5} H. Baba,^{*3} A. I. Chilug,^{*6,*3} S. Franchoo,^{*7} Y. Fujino,^{*8} J. Gibelin,^{*9} I. S. Hahn,^{*1,*10} Z. Halász,^{*11} T. Harada,^{*12,*3} M. N. Harakeh,^{*13,*14} D. Inomoto,^{*5} T. Isobe,^{*3} H. Kasahara,^{*5} D. Kim,^{*1,*15} G. G. Kiss,^{*11} T. Kobayashi,^{*16,*3} Y. Kondo,^{*17,*3} Z. Korkulu,^{*1,*3} S. Koyama,^{*18,*3} Y. Kubota,^{*3} A. Kurihara,^{*17} H. N. Liu,^{*19} M. Matsumoto,^{*17} S. Michimasa,^{*2} H. Miki,^{*17,*3} M. Miwa,^{*20} T. Motobayashi,^{*3} T. Nakamura,^{*17,*3} M. Nishimura,^{*3} H. Otsu,^{*3} V. Panin,^{*3} S. Park,^{*10} A. T. Saito,^{*17,*3} H. Sakai,^{*3} H. Sato,^{*3} T. Shimada,^{*17} Y. Shimizu,^{*3} S. Shimoura,^{*2} A. Spiridon,^{*6} I. C. Stefanescu,^{*6} X. Sun,^{*3,*4} Y. L. Sun,^{*19} H. Suzuki,^{*3} E. Takada,^{*21} Y. Togano,^{*8,*3} T. Tomai,^{*17,*3} L. Trache,^{*6} D. Tudor,^{*6,*3} T. Uesaka,^{*3} H. Yamada,^{*17} M. Yasuda,^{*17} K. Yoneda,^{*3} K. Yoshida,^{*3} J. Zenihiro,^{*3} and N. Zhang^{*22,*2}

In the SAMURAI30 experiment, we studied the Gamow-Teller (GT) giant resonance in the drip-line nucleus ¹¹Li at 181 MeV/nucleon utilizing the missingmass technique.¹⁾ The ¹¹Li nucleus is the showcase of a two-neutron halo system, with its very extended matter distribution related to the small energy necessary to remove the neutrons. The charge-exchange (p, n) reactions in inverse kinematics are efficient tools to extract the B(GT) strengths of unstable isotopes up to high excitation energies without the Q-value limitation.²⁾ In our previous study, we demonstrated that accurate information about isovector spin-flip giant resonances can be obtained for unstable nuclei using this probe.³⁾ The setup of the PANDORA low-energy neutron time-offlight counter⁴) and SAMURAI magnetic spectrometer⁵⁾ as well as a thick liquid hydrogen target, facilitate the performance of measurements with high luminosity.

The β decay of ¹¹Li is complex. The large mass difference between ¹¹Li and its daughter ¹¹Be (Q =20.6 MeV) implies that several decay channels to the bound and unbound states in ¹¹Be are open. In the latter cases, the daughter breaks into fragments, and the emission of one, two, and three neutrons, α particles and ⁶He, tritons, and deuterons has been observed in several β -decay studies.^{6,7)} In our previous reports⁸⁾ on the preliminary results on GT giant resonance, the

- *2 Center for Nuclear Study, University of Tokyo
- *3 **RIKEN** Nishina Center
- *4School of Physics, Peking University
- *5 Department of Physics, Kyushu University
- *6 Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering
- *7 Institute de Physique Nucléaire, University Paris-Saclay
- *8 Department of Physics, Rikkyo University
- *9 Nuclear Physics Labratory LPC CAEN
- *10 Department of Physics, Ewha Womans University
- *11Institute for Nuclear Research (ATOMKI)
- *12 Department of Physics, Toho University
- *13Department of Physics, University of Groningen
- *14GSI Helmholtzzentrum für Schwerionenforschung
- *15 Department of Physics, Korea University
- *16Department of Physics, Tohoku University
- *17Department of Physics, Tokyo Institute of Technology *18
- Department of Physics, University of Tokyo
- *19Départment Physique Nucl., CEA, University Paris-Saclay
- *²⁰ Department of Physics, Saitama University
- ^{*21} National Institute of Radiological Sciences (NIRS)
- ^{*22} Institute of Modern Physics, Chinese Academy of Sciences

observation of these different decay channels was confirmed. Among them, the most interesting decay mode is ${}^{9}\text{Li} + d$. This channel is related to the possibility that in halo nuclei, the core and halo particles could decay, more or less independently, into different channels.⁹⁾

We observed a strong transition at approximately 19 MeV in the excitation energy spectrum of 11 Be. The angular distribution in center-of-mass angle of the observed state indicates a strong forward peaking nature, which suggests the GT transition, as depicted in Fig. 1, in agreement with previous β -decay studies.

Fig. 1. Angular distribution, in the $0^{\circ}-25^{\circ}$ center-of-mass angular range, of the strong peak observed in the excitation energy spectrum of the daughter nucleus ¹¹Be for the ${}^{9}\text{Li} + d$ decay mode.

References

- 1) M. Sasano et al., Phys. Rev. Lett. 107, 202501 (2011).
- 2) T. N. Taddeucci et al., Nucl. Phys. A 469, 125 (1987).
- 3) J. Yasuda et al., Phys. Rev. Lett. 121, 132501 (2018).
- 4) L. Stuhl et al., Nucl. Instrum. Methods Phys. Res. A 866, 164 (2017).
- T. Kobayashi et al., Nucl. Instrum. Methods Phys. Res. 5)B 317, 294 (2013).
- 6) R. Raabe et al., Phys. Rev. Lett. 101, 212501 (2008).
- 7) I. Mukha et al., Nucl. Phys. A 616, 201 (1997).
- 8) L. Stuhl et al., RIKEN Accel. Prog. Rep. 53, 38 (2019).
- 9) T. Nilsson et al., Hyperfine Interact. 129, 67 (2000).

^{*1} Center for Exotic Nuclear Studies, Institute for Basic Science