Progress on the analysis of P_n -values relevant for the formation of the *r*-process rare-earth peak

M. Pallàs,*¹ A. Tarifeño-Saldivia,*^{2,*1} G. G. Kiss,*³ J. L. Tain,*² A. Tolosa-Delgado,*^{4,*2} A. Vitéz-Sveiczer,*^{3,*5}

F. Calviño,^{*1} J. Agramunt,^{*2} A. Algora,^{*2} N. T. Brewer,^{*8,*6} R. Caballero-Folch,^{*9} T. Davinson,^{*10}
I. Dillmann,^{*9,*11} A. Estrade,^{*12} N. Fukuda,^{*7} R. K. Grzywacz,^{*8,*6} O. Hall,^{*10} N. Mont-Geli,^{*1} A. I. Morales,^{*2}
A. Navarro,^{*1} N. Nepal,^{*7} S. Nishimura,^{*7} B. C. Rasco,^{*8,*6} K. P. Rykaczewski,^{*6} T. N. Szegedi,^{*3} V. Phong,^{*7}

R. Yokoyama,^{*13} M. Wolińska-Cichocka,^{*14} and P. J. Woods^{*10} for the BRIKEN Collaboration^{*15}

Rapid neutron capture (the *r*-process) produces nearly half of the nuclei heavier than iron in explosive stellar scenarios. Above the mass number A = 100, there are two main peaks in the r-process solar-system abundances, are located at $A \sim 130$ and $A \sim 195$. Located between them, the Rare-Earth Peak (REP) is a tiny but definite peak at mass number $A \sim 160$ that results from the freeze-out during the last stages of neutron exposure. According to theoretical models and sensitivity studies, half-lives $(T_{1/2})$ and β -delayed neutron emission probabilities (P_{xn}) of neutron-rich nucleus, in the mass region $A \sim 160$ for $55 \le Z \le 64$ are critical for the formation of the REP.^{1,2}) As a part of the BRIKEN collaboration, the NP1612-RIBF148 experiment measured half-lives and β -delayed from Ba to Gd (Z = 56-64). In 2018, an experimental run centered on $^{165}\mathrm{Pm}$ was conducted using a total of 5 days of beamtime. The results for Pm to Gd (Z = 61-64)species are already published.³⁾ The data analysis for Ba to Nd (Z = 56-60) species using the method proposed in^{4} is presented in this report.

The NP1612-RIBF148 experimental setup consisted of the Advanced Implantation Detector Array $(AIDA)^{5}$ and the BRIKEN neutron counter.⁶) The neutron counter was placed surrounding AIDA to detect the β -delayed neutrons offering a nominal value for the efficiency of 68.6% up to 1 MeV.

In Fig. 1, the preliminary results for the P_{1n} values are compared with evaluated nuclear data from the ENSDF and some theoretical predictions.^{7–9}) Preliminary reports include 14 new P_{1n} values (^{151–152}Ba,

- *1Institut de Tècniques Energètiques (INTE), Universitat Politècnica de Catalunya (UPC)
- *2 Instituto de Física Corpuscular (IFIC), CSIC-UV
- *3 Institute for Nuclear Research (ATOMKI)
- *4Department of Physics, University of Jyväskylä
- *5Doctoral School of Physics, University of Debrecen
- *6 Physics Division, Oak Ridge National Laboratory
- *7 **RIKEN** Nishina Center
- *8 Department of Physics and Astronomy, University of Tennessee
- *9 **TRIUMF.** Vancouver
- *10 School of Physics and Astronomy, University of Edinburgh
- *11 Department of Physics and Astronomy, University of Victoria
- *12Department of Physics and Science of Advanced Materials Program, Central Michigan University
- *¹³ Center for Nuclear Study, University of Tokyo
- *14 Heavy Ion Laboratory, University of Warsaw
- *15 www.wiki.ed.ac.uk/display/BRIKEN/Home

Fig. 1. Preliminary P_{1n} values derived in this work (red dot) compared with previous measurements (blue triangle) and theoretical calculations. $^{7-9)}$

 $^{151-153}$ La, $^{154-156}$ Ce, $^{155-158}$ Pr, and $^{159-160}$ Nd). Two other P_{1n} values (^{149–150}La) were also remeasured, obtaining consistent results with previous measurements. Our data supports the overall trend for all P_{1n} predictions when compared to theoretical models. The pn-RQRPA + HFM model⁹) best replicates the experimental data and provides good agreement for the majority of the isotopes.

References

- 1) A. Arcones et al., Phys. Rev. C 83, 045809 (2011).
- 2) M. R. Mumpower et al., Phys. Rev. C 85, 045801 (2012).
- 3) G. G. Kiss et al., Astrophys. J. 936, 107 (2022).
- 4) C. J. Griffin et al., Jap. Phys. Soc. Conf. Proc. 14, 020622 (2017).
- 5) A. Tarifeño-Saldivia et al., J. Instrum. 12, P04006 (2017).
- A. Tolosa-Delgado et al., Nucl. Instrum. Methods Phys. 6)Res. A 925, 133 (2019).
- 7) P. Möller et al., At. Data Nucl. Data Tables 125, 1 (2019).
- 8) T. Marketin et al., Phys. Rev. C 93, 025805 (2016).
- 9) F. Minato et al., Phys. Rev. C 104, 044321 (2021).