The result of electron scattering with Xe isotopes at SCRIT electron scattering facility

H. Wauke,^{*1} D. Abe,^{*1} Y. Abe,^{*2} A. Enokizono,^{*2} R. Danjo,^{*1} T. Goke,^{*1} Y. Honda,^{*1,*2} Y. Ishikura,^{*1}
Y. Itou,^{*3} K. Kurita,^{*4} H. Ohnishi,^{*2} C. Legris,^{*1} Y. Maehara,^{*3} Y. Nagano,^{*5} R. Obara,^{*1} R. Ogawara,^{*3}
T. Suda,^{*1,*2} K. Tsukada,^{*2,*3} M. Watanabe,^{*2} M. Wakasugi,^{*2,*3} and S. Yoshida^{*3}

Self-Confining Radioactive Ion Target (SCRIT) electron scattering facility¹⁾ was constructed to perform electron scattering experiments for short-lived unstable nuclei. SCRIT is a unique technique to achieve a luminosity of 10^{27} cm⁻²s⁻¹ via the trapping of a few target ion that is, 10^8 particles/pulse, along the electron beam.

We have started a series of measurements of isotope (Z = 50) and isotone (N = 82) dependence of nuclear charge density distribution. These studies use the nuclei of Xe isotopes $(^{138}, ^{136}, ^{134}, ^{132}, ^{130}, ^{128}, ^{126}, ^{124}Xe)$ and N = 82 isotones $(^{138}Ba, ^{2)} ~^{137}Cs, ^{3)} ~^{136}Xe, ~^{132}Sn)$ including the ^{132}Sn and ^{137}Cs , unstable nuclei. The Xe isotope has the second most stable nuclei after Sn; however, no electron scattering data is available, except for $^{132}Xe, ^{4)}$ which was measured at the SCRIT facility. These isotope and isotone dependencies should provide invaluable information for theoretical development.^{5,6)}

In 2022 July, we conducted the electron scattering experiment using ^{136, 134, 132, 130}Xe targets. The Xe target was ionized with FEBIAD-type ion source by injecting natural Xe gas directly into the ionization chamber inside the ERIS.⁷) The ionized Xe was mass-separated by a bending magnet installed after ERIS. After cooling and stacking inside the $FRAC^{(8)}$ almost 10^8 of massspecific Xe ions/pules were transported to the SCRIT system at a frequency of 1 Hz. Experiments with 136 Xe were performed at both 150 and 250 MeV, whereas the experiments with ^{134, 132, 130}Xe were only performed at 150 MeV. Further, the beam current was 250 mA at the beginning of the data acquisition and reduced to 150 mA at the end. Figure 1 shows the yield distributions of ¹³⁶Xe with momentum transfer following acceptance corrections. The solid lines represent the calculated ones using the theoretical charge density distribution of 136 Xe⁵⁾ using the phase shift calculation code DREPHA.⁹⁾ The total experimental time and average luminosity of each experiment is presented in Table 1. Average luminosities were measured by a luminosity monitor

The 124 Xe, which is scheduled to be launched soon, has a smaller abundance ratio than other Xe, thus, we have upgraded ERIS and have already achieved a production rate similar to that of 136 Xe. From 2023, we

*4 Department of Physics, Rikkyo University

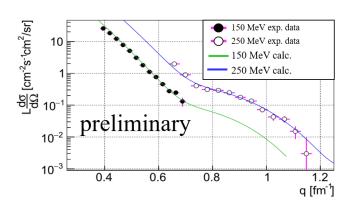


Fig. 1. Yield distributions of 136 Xe with momentum transfer following acceptance corrections. Filled and opened circles indicate preliminary results from this study. The solid lines are the phase-shift calculated values obtained using a theoretically calculated charge-density distribution of 136 Xe.⁵⁾

Table 1. Experimental situation.

Nuclei	Beam Energy [MeV]	Total Exp. time [s]	Lumi. ave $[\times 10^{27} \text{ cm}^{-2} \text{s}^{-1}]$
¹³⁶ Xe	150	1.94×10^{5}	1.55
136 Xe	250	4.28×10^{5}	2.08
134 Xe	150	1.18×10^{5}	1.66
$^{132}\mathrm{Xe}$	150	0.90×10^{5}	1.69
$^{130}\mathrm{Xe}$	150	1.29×10^{5}	1.33
total		9.59×10^{5}	

will conduct experiments on the remaining Xe and proceed with further analysis.

References

- 1) M. Wakasugi et al., Phys. Rev. Lett. 100, 164801 (2008).
- K. Tsukada *et al.*, RIKEN Accel. Prog. Rep. 55, 24 (2021).
- 3) K. Tsukada *et al.*, Phy. Rev. Lett. **131**, 092502 (2023)
- 4) K. Tsukada et al., Phys. Rev. Lett. 118, 262501 (2017).
- 5) T. Liang et al., Phys. Rev. C 98, 044310 (2018).
- 6) X. Roca-Maza et al., Phys. Rev. C 87, 014304 (2013).
- T. Ohnishi *et al.*, Nucl. Instrum. Methods Phys. Res. B 317, 357 (2013).
- 8) M. Wakasugi $et \; al.,$ Rev. Sci. Instrum. $\mathbf{89},$ 095107 (2018).
- B. Drepher, A phase-shift calculation code for elastic electron scattering (private communication with J. Friedrich).

^{*1} Research Center for Electron Photon Science, Tohoku University

^{*&}lt;sup>2</sup> RIKEN Nishina Center

^{*3} Institute for Chemical Research, Kyoto University

^{*5} Faculty of Science, Yamagata University