Production yields of ¹⁶⁵Er and ¹⁶⁹Yb via 24-MeV deuteron induced reactions

Y. Shigekawa,^{*1} A. Nambu,^{*1} Y. Kumakura,^{*2} and H. Haba^{*1}

The use of Auger electrons for cancer therapy has been widely investigated owing to their higher linear energy transfer than β^- particles. ¹⁶⁵Er ($T_{1/2}$ = 10.4 h) and ¹⁶⁹Yb ($T_{1/2}$ = 32.0 d), which decay purely via electron capture (EC), are promising candidates for targeted radionuclide therapy using Auger electrons.^{1,2)} Moreover, the decay of ¹⁶⁹Yb accompanies the emission of cascade γ -rays potentially applicable to nuclear-medicine imaging that can prove the local chemical environment.³⁾ In order to perform nuclear-medicine studies with 165 Er and 169 Yb, we need to produce >1 GBq of 165 Er and >100 MBq of ¹⁶⁹Yb and chemically purify them without adding carriers. The production cross sections for these isotopes were reported for the ${}^{165}\text{Ho}(d,2n){}^{165}\text{Er}^{4,5)}$ and 169 Tm $(d, 2n)^{169}$ Yb reactions.⁶⁻⁸⁾ In this study, we confirmed the production yields of 165 Er and 169 Yb via 24-MeV deuteron induced reactions using thick target foils to determine the irradiation conditions to obtain sufficient radioactivity for nuclear-medicine studies.

We irradiated ¹⁶⁵Ho and ¹⁶⁹Tm targets with a 23.9-MeV deuteron beam at the RIKEN AVF cyclotron. The ¹⁶⁵Ho target consisted of four ¹⁶⁵Ho foils (10 × 10 mm, 219.9 mg/cm², purity 99.9%) and was irradiated with an average beam intensity of 102 nA for 30 min. The ¹⁶⁹Tm target consisted of nine ¹⁶⁹Tm foils (8 × 8 mm, 94.5 mg/cm², purity 99%) and was irradiated with an average beam intensity of 105 nA for 3 h. After irradiation, γ -ray spectroscopy was performed using high-purity Ge detectors.

The radioactivity of ¹⁶⁹Yb was determined with the γ peaks of 177.2 and 307.7 keV. For ¹⁶⁵Er, no- γ rays are emitted; thus, the-X rays of Ho emitted after the EC decay were used to quantify ¹⁶⁵Er. The X-rays of Ho (46.7, 47.5, 53.7, 53.9, and 55.3 keV) were observed as three peaks in the γ -ray spectra. The peak corresponding to the 53.7- and 53.9-keV X-rays was useful to quantify ¹⁶⁵Er because the other X-rays overlap with the Er X-rays emitted from ¹⁶⁶Ho $(T_{1/2} = 26.8 \text{ h})$ produced in the 165 Ho $(d, p){}^{166}$ Ho reaction. The count rate for the peak of the 53.7- and 53.9-keV X-rays was obtained by fitting a Gaussian function to each dataset. The X-ray count rate as a function of the elapsed time decreased with the half-life of 165 Er (10.4 h), meaning that interference from radioactive impurities was negligibly small. To determine the radioactivity of ¹⁶⁵Er, the self-absorption of X-rays by the thick Ho foils was corrected using the γ -ray measurements for the two sides of each foil and a database of the X-ray absorption coefficients.⁹⁾

The cross sections of 165 Er and 169 Yb (Figs. 1 and 2) are almost consistent with those of previous studies.^{4–8)} The total radioactivity of 165 Er at the end of bombardment (EOB) was 19.7(12) MBq, and the impurity was 3.2(3) MBq of 166 Ho. The total radioactivity of 169 Yb at the EOB was 2.06(3) MBq, and the impurities were 0.071(1) MBq of 168 Tm and 0.16(3) MBq of 167 Tm. Hence, the thick target yields for 165 Er and 169 Yb were determined to be 390(24) and 6.58(14) MBq/ μ Ah, respectively. Via irradiation

Fig. 1. Excitation function of the ${}^{165}\text{Ho}(d, 2n){}^{165}\text{Er}$ reaction measured in this work. The values measured in previous studies^{4,5)} are also shown for comparison.

Fig. 2. Excitation function of the ${}^{169}\text{Tm}(d, 2n){}^{169}\text{Yb}$ reaction measured in this work. The values measured in previous studies ${}^{6-8)}$ are also shown for comparison.

^{*1} RIKEN Nishina Center

 $^{^{\}ast 2}$ $\,$ Faculty of Medicine, Saitama Medical University

with a 5- μ A deuteron beam, we will be able to produce 1 GBq of ¹⁶⁵Ho in 0.5 h and 100 MBq of ¹⁶⁹Yb in 3 h, which are sufficient for nuclear-medicine studies.

References

- 1) I. D. Silva *et al.*, Molecules **26**, 7513 (2021).
- 2) S. M. Qaim et al., Radiochim. Acta 95, 313 (2007).
- 3) K. Shimazoe et al., Commun. Phys. 5, 24 (2022).
- 4) F. Tarkanyi *et al.*, Nucl. Instrum. Methods Phys. Res. B 266, 3529 (2008).
- A. Hermanne *et al.*, Nucl. Instrum. Methods Phys. Res. B **311**, 102 (2013).
- 6) F. Tarkanyi et al., Appl. Radiat. Isot. 65, 663 (2007).
- A. Hermanne *et al.*, Nucl. Instrum. Methods Phys. Res. B 267, 727 (2009).
- 8) M. Saito et al., Appl. Radiat. Isot. 125, 23 (2017).
- M. J. Berger *et al.*, XCOM: Photon Cross Section Database (version 1.5), National Institute of Standards and Technology, Gaithersburg, MD (2010).