Production cross sections of 52g Mn in α -particle-induced reactions on ${}^{nat}V^{\dagger}$

G. Damdinsuren,^{*1,*2} M. Aikawa,^{*1,*2,*3} Kh. Tegshjargal,^{*4} N. Erdene,^{*4} S. Ebata,^{*5,*2} and H. Haba^{*2}

Manganese-52 has the longer-lived ground state $^{52g}\mathrm{Mn}\ (T_{1/2}=5.6~\mathrm{d},\,\varepsilon+\beta^+:\,100\%)$ and the shorterlived excited state 52m Mn ($T_{1/2} = 21.1 \text{ min}$, IT: 1.78%, $\varepsilon + \beta^+$: 98.22%). The decay processes of 52g Mn are electron capture (70.6%) and positron emission $(29.4\%, \langle E_{\beta^+} \rangle = 242 \text{ keV})^{.1}$ The positrons emitted from the decay of 52g Mn can be used for Positron Emission Tomography (PET).²⁾ The direct routes to produce ^{52g}Mn involve charged-particle-induced reactions on chromium and vanadium. Whereas, the indirect route involves the internal transition of ${}^{52m}Mn$ co-produced simultaneously in the reactions. This study, we focused on the α -particle-induced reaction on ^{nat}V . Eleven experimental cross section data of the $^{nat}V(\alpha, x)^{52g}Mn$ reactions were found in the EX-FOR library.³ However, their data are largely scattered. Therefore, we measured the excitation function of the $^{nat}V(\alpha, x)^{52g}Mn$ reaction up to 50 MeV. The obtained cross sections were compared with the literature data and theoretical calculation in the TENDL-2019 library.⁴⁾

The stacked-foil activation technique and highresolution γ -ray spectrometry were used to measure the cross sections. Pure metallic foils of ^{nat}V (25- μ m thick, 99% purity), ^{nat}Ti (5- μ m thick, 99.6% purity), and 27 Al (5- μ m thick, >99% purity) were purchased from Nilaco Corp., Japan, and used for the stacked target. The ^{nat}Ti foils were interleaved for the nat Ti $(\alpha, x)^{51}$ Cr monitor reaction. The ²⁷Al foils were used to catch recoiled products from the ^{nat}V and ^{nat}Ti foils. The average target thicknesses were derived from the measured size and weight of the original foils. Derived average thicknesses of $^{nat}\mathrm{V},~^{nat}\mathrm{Ti},$ and $^{27}\mathrm{Al}$ foils were 20.4, 2.24, and 1.22 mg/cm^2 , respectively. The original foils were cut into a size of 8×8 mm. Eleven sets of V-Al-Ti-Ti-Al foils were stacked into a target holder, which served as a Faraday cup.

The stacked target was irradiated with an α -particle beam for 30 min. The primary beam energy was measured by the time-of-flight method.⁵⁾ The measured beam energy was 50.6 ± 0.2 MeV. Consequently, the energy degradation in the stacked target was calcu-

- *² RIKEN Nishina Center
- *³ Faculty of Science, Hokkaido University
- *4 School of Engineering and Applied Sciences, National University of Mongolia
- $^{*5}~$ Graduate School of Science and Engineering, Saitama University

lated using stopping powers obtained from the SRIM code.⁶ The average beam intensity measured using the Faraday cup was 194 nA.

 γ rays emitted from each irradiated foil were measured by a high-resolution HPGe detector (ORTEC GEM-25185-P), which was calibrated with a multiple gamma-ray emitting point source. The spectra were analyzed using dedicated software (SEIKO EG&G Gamma Studio). Each ^{nat}V foil with the following ²⁷Al catcher foil was measured several times. The distance between the detector and foils was arranged to ensure a dead time of less than 3%.

The cross sections of the ^{nat}Ti(α, x)⁵¹Cr monitor reaction were derived and used to assess the beam parameters and target thicknesses. The measurement of the γ line at 320.08 keV ($I_{\gamma} = 9.91\%$) from the decay of ⁵¹Cr ($T_{1/2} = 27.7025$ d) was performed following a cooling time of 3 days. Only the Ti foils at the beam downstream of each Ti-Ti foil pair in the stack were used for cross section deduction because the compensation of recoiled ⁵¹Cr was expected. The dead time during the measurements was maintained at less than 1%. Subsequently, the derived cross sections were compared with the IAEA-recommended values⁷⁾ and found to be consistent with each other. We adopted the measured beam parameters and target thicknesses without any corrections for data analyses.

The cross sections of the $^{nat}V(\alpha, x)^{52g}Mn$ reaction were derived. The γ line at 935.544 keV ($I_{\gamma} = 94.5\%$) from the decay of ^{52g}Mn was measured following a cooling time of 17 d. During the cooling time, the excited state ^{52m}Mn completely decayed to the ground state ^{52g}Mn or the stable nuclide ^{52}Cr . The cumulative cross

^{nat}V(a,x)^{52g}Mn(cum)

Fig. 1. Excitation functions of the ${}^{nat}V(\alpha, x)^{52g}Mn$ reaction.

400

350

[†] Condensed from the article in Appl. Radiat. Isot. 184, 110204 (2022)

^{*1} Graduate School of Biomedical Science and Engineering, Hokkaido University

sections could be derived from the measured net counts of the γ line. The excitation functions are shown in Fig. 1 along with the literature data and TENDL-2019 values.⁴⁾ The measured cross sections exhibited a smooth curve and agreement with part of the previous experimental data. However, the shape of the TENDL-2019 values was largely different from the experimental data.

G. Damdinsuren was granted a scholarship by the M-JEED project (Mongolian-Japan Engineering Education Development Program, J11B16).

References

- 1) Y. Dong et al., Nucl. Data Sheets 128, 185 (2015).
- 2) F. Bianchi et al., Appl. Radiat. Isot. 166, 109329 (2020).
- 3) N. Otuka *et al.*, Nucl. Data Sheets **120**, 272 (2014).
- 4) A. J. Koning et al., Nucl. Data Sheets 155, 1 (2019).
- T. Watanabe *et al.*, Proc. 5th Int. Part. Accel. Conf. (IPAC 2014), (2014), p. 3566.
- J. F. Ziegler *et al.*, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010).
- 7) F. Tárkányi et al., IAEA-TECDOC-1211 (2007).