Production cross sections of ${}^{47}Sc$ via α -particle induced reactions on ${}^{nat}Ca^{\dagger}$

M. Aikawa,^{*1,*2} Y. Hanada,^{*3,*2} D. Ichinkhorloo,^{*4,*2} H. Haba,^{*2} S. Takács,^{*5,*2} F. Ditrói,^{*5,*2} and Z. Szücs^{*5,*2}

Scandium-47 ($T_{1/2} = 3.3492$ d) is a potential radionuclide for therapy.¹⁾ Owing to the relatively small abundance of ⁴⁶Ca (0.004%) and ⁴⁸Ca (0.187%) in natural calcium, its most possible production route for practical use is expected to be the α -particle-induced reaction on ⁴⁴Ca (2.086%).

In a literature survey, we found only one experimental study of the ${}^{44}\text{Ca}(\alpha, p){}^{47}\text{Sc}$ reaction.²⁾ Therefore, we performed an experiment to provide more credible cross sections of the ${}^{nat}\text{Ca}(\alpha, x){}^{47}\text{Sc}$ reaction. In addition to the production cross sections of ${}^{47}\text{Sc}$, the activation cross sections for ${}^{46, 44m, 44g, 43}\text{Sc}$ and ${}^{47}\text{Ca}$ were also determined simultaneously.

In the experiment, a 29-MeV α -particle beam was used to activate the targets at the AVF cyclotron in RIKEN. The stacked-foil activation technique and high resolution γ -ray spectrometry were adopted to perform the measurement.

Calcium-fluoride (CaF_2) was deposited on a highpurity ²⁷Al backing foil (Al_H, 99.999% purity, Goodfellow Co. Ltd., UK) and used as the ^{nat}Ca target. Metallic foils of ^{*nat*}Ti (99.5% purity) for the ^{*nat*}Ti(α, x)⁵¹Cr monitor reaction and low-purity ${}^{27}Al$ (Al_L, >99% purity) to catch recoiled products were purchased from Nilaco Corp., Japan and inserted into the stack. The average thicknesses of the $Al_{\rm H}$, $Al_{\rm L}$, and nat Ti foils were 2.57, 1.50, and 2.30 mg/cm², respectively, determined from the measured lateral sizes and weights of the foils. The thickness of the deposited CaF_2 layer was 0.135 mg/cm^2 , which was derived from the measured deposited area and net weight. All foils were cut into a size of 10×10 mm to fit a target holder that also served as a Faraday cup. Each ^{nat}Ca target comprised two CaF_2 layers sandwiched between the Al_H backing foils. Twelve nat Ca targets were stacked with seven sets of ^{*nat*}Ti-Al_L foils in the target holder.

The stacked target was irradiated with an α -particle beam for 30 min. The measured average beam intensity and energy were 175 nA and 29.0 \pm 0.2 MeV, respectively. The energy degradation in the stacked target was calculated using stopping powers obtained from the SRIM code.³⁾

The high-resolution $\gamma\text{-ray}$ spectrometry using a high-purity germanium detector was performed with-

- *³ Graduate School of Biomedical Science and Engineering, Hokkaido University
- ^{*4} Nuclear Research Center, National University of Mongolia
- *5 Institute for Nuclear Research (ATOMKI)

out chemical separation. The spectra of the nat Ca targets were measured with cooling times ranging from 3.2 h to 77 d.

The derived cross sections of the $^{nat}\text{Ti}(\alpha, x)^{51}\text{Cr}$ monitor reaction were compared with the IAEA recommended values⁴⁾ to assess beam parameters and target thicknesses. The beam intensity and thicknesses of both Al_H and Al_L foils were corrected within their uncertainties by +5.6% and -1%, respectively. The measured thicknesses of the ^{nat}Ti monitor foil and the CaF₂ layer were adopted without any correction.

⁴⁷Sc could be produced directly in the ⁴⁴Ca(α, p)⁴⁷Sc reaction and indirectly by decay of the co-produced 47 Ca $(T_{1/2} = 4.536 \text{ d})$ and 47 K $(T_{1/2} = 17.50 \text{ s})$. The indirect contribution was at a negligible level because 47 Ca and 47 K can be formed only on the lowerabundant ⁴⁶Ca and ⁴⁸Ca isotopes. The activity of ⁴⁷Sc was determined by measuring the γ line at 159.381 keV $(I_{\gamma} = 68.3\%)$ from the decay of ⁴⁷Sc. The derived cross sections of the ${}^{nat}Ca(\alpha, x)^{47}Sc$ reaction are shown in Fig. 1 compared with the literature $data^{2}$ and the theoretical values provided in the TENDL-2019 library.⁵⁾ The literature data on ⁴⁴Ca targets were normalized to those on ^{nat}Ca targets. The newly obtained data correspond to a smooth excitation function, in contrast to the literature data. The TENDL-2019 calculation overestimates both the experimental datasets. Thus, the data are expected to contribute to practical use in nuclear medicine and aid in improving the theoretical models.

Fig. 1. Measured cross sections of the ${}^{nat}Ca(\alpha, x){}^{47}Sc$ reaction with normalized literature data¹⁾ and TENDL-2019 values.⁵⁾

This work was supported by the Japan-Hungary Research Cooperative Program between JSPS and HUS, Grant number JPJSBP120193808 and NKM-43/2019.

[†] Condensed from the article in Nucl. Instrum. Methods Phys. Res. B **515**, 1 (2022)

^{*1} Faculty of Science, Hokkaido University

^{*&}lt;sup>2</sup> RIKEN Nishina Center

References

- 1) I. F. Chaple *et al.*, J. Nucl. Med. **59**, 1655 (2018).
- 2) V. N. Levkovski, Cross Sections of Medium Mass Nuclide Activation (A = 40–100) by medium energy protons and alpha particles (E = 10–50 MeV) (Inter-Vesi, Moscow, USSR, 1991).
- J. F. Ziegler *et al.*, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010).
- 4) A. Hermanne *et al.*, Nucl. Data Sheets **148**, 338 (2018).
- 5) A. J. Koning et al., Nucl. Data Sheets 155, 1 (2019).