Efficacy of nuclear medicine therapy with ${}^{67}CuCl_2$ in mice bearing LS180 colon cancer

Y. Fujisawa,^{*1} Y. Sugiura,^{*1} H. Haba,^{*2} A. Nambu,^{*2} Y. Shigekawa,^{*2} X. Yin,^{*2} Y. Magata,^{*3} and Y. Iida^{*1}

Nuclear medicine is one of the effective methods for early diagnosis and therapy of cancer, and various radioisotopes (RI) have been used. Among them, radioactive Cu is expected to be a promising RI with diagnostic and therapeutic properties. Radioactive Cu includes ⁶⁰Cu, ⁶¹Cu, ⁶²Cu, and ⁶⁴Cu, which are effective for PET diagnosis, and ⁶⁷Cu, which can be applied for treatment. ⁶⁷Cu is a therapeutic radionuclide that emits β -particles of energy 0.392 to 0.577 MeV with a half-life of 61.8 h. Although the β -particle energy of ⁶⁷Cu is low, it is expected to be effective in treating small cancers.¹⁾ RIs that have high-energy β -particles, such as 90 Y, show a good therapeutic effect, but they also have a large effect on surrounding tissues, and the injected dose is limited by exposure to other organs.²⁾ 67 Cu has a low-energy β -particles and can be administered in large doses, leading to effective and efficient treatment.³⁾ Another advantage of ⁶⁷Cu is the ability to calculate exposure doses accurately. Injected doses of radiopharmaceuticals used in nuclear medicine therapy are calculated from the exposure doses. ⁶⁷Culabeled drugs can accurately calculate the exposure doses with ⁶⁴Cu-labeled ones, contributing to safe and effective personalized medicine.

Various studies have been conducted on cancer diagnosis and therapy using radioactive Cu-labeled drugs, and in recent years, the possibility of PET diagnosis using ⁶⁴CuCl₂ has been demonstrated. Copper transporter protein 1 (CTR1) is overexpressed in various cancers, suggesting that ⁶⁴Cu accumulates in cancer via CTR1.⁴) Based on these studies, the tumor accumulation of ⁶⁷CuCl₂ was also evaluated, and it was found to have the same pharmacokinetics as ⁶⁴CuCl₂.⁵) In this study, we investigated the therapeutic effect of ⁶⁷CuCl₂ on tumor-bearing mice to clarify the potential of cancer therapy using ⁶⁷CuCl₂.

Tumor-bearing mice were prepared by implantation of LS180 tumor cells (5×10^6 cells) in 0.1 mL PBS into the flanks of nude mice (BALB/c-nu/nu, male). Biodistribution experiments were performed by intravenously administering ⁶⁷CuCl₂. The mice were killed at 1, 24 and 48 h after administration, and tissues of interest were excised and weighed before their radioactivity was measured. LS180 tumors were grown in BALB/c mice in the same way for therapeutic studies. Mice were administered with 17.0–23.2 MBq of

- *² RIKEN Nishina Center
- $^{\ast 3}~$ Department of Molecular Imaging, Hamamatsu University School of Medicine

 67 CuCl₂ intravenously. Saline-treated mice were used as a control. Mice were weighed and tumor diameters were recorded regularly. The diameters of tumorswere measured with a caliper, and tumor volumes were determined using the formula: (longer diameter) × (shorter diameter)²/2. This study was performed in accordance with the recommendations by the Guide for the Care and Use of Laboratory Animals of the Suzuka University of Medical Science.

 67 CuCl₂ showed high accumulation in the tumor, 6.50 ± 2.34 , 6.85 ± 1.83 , and $5375 \pm 1.26\%$ ID/g at 1, 24, and 48 h after administration, as shown in a previous study. Tumor size reduction was observed in all mice treated with 67 CuCl₂ (Fig. 1). However, but relatively significant weight loss was also observed in them (Fig. 2). Therefore, 67 Cu is a promising RI for

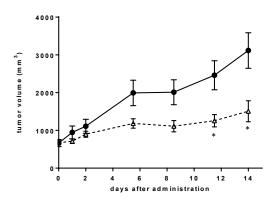


Fig. 1. The rapeutic studies of $^{67}{\rm CuCl_2}$ in LS180 tumor-bearing mice. (•; saline (n=7), $\bigtriangleup;$ $^{67}{\rm CuCl_2}$ (n=4).*, p<0.05 (2-way ANOVA followed by sidack-test).

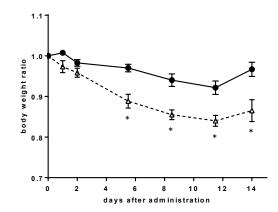


Fig. 2. Changes in body weight of mice after saline or 67 CuCl₂ administration. (•; saline (n = 7), \triangle ; 67 CuCl₂ (n = 4). *, p < 0.05 (2-way ANOVA followed by sidack-test).

^{*1} Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science

the treatment of cancer, but the use of 67 Cu-labeled drugs that selectively accumulate in cancer cells are thought to be more suitable for cancer therapy.

References

- Y. Fujisawa *et al.*, RIKEN Accel. Prog. Rep. **53**, 175 (2019).
- 2) G. A. Wiseman *et al.*, Eur. J. Nucl. Med. **27**, 766 (2000).
- Y. Fujisawa *et al.*, RIKEN Accel. Prog. Rep. 55, 141 (2021).
- 4) C. Qin et al., J. Nucl. Med. 55, 812 (2014).
- 5) Y. Sugo et al., J. Phys. Soc. Jpn. 86, 023201 (2017).