Astatine-211-labeled gold nanoparticles for targeted alpha-particle therapy via intravenous injection[†]

X. Huang,^{*1} K. Kaneda-Nakashima,^{*2,*3} Y. Kadonaga,^{*4} K. Kabayama,^{*1,*2,*3} A. Shimoyama,^{*1,*2,*3} K. Ooe,^{*2,*3} H. Kato,^{*4} A. Toyoshima,^{*2,*3} A. Shinohara,^{*2,*5} H. Haba,^{*6} Y. Wang,^{*6} and K. Fukase^{*1,*2,*3}

Recently, much attention has been directed towards the powerful cancer therapeutic potential of targeted alpha-particle therapy (TAT). Globally, particularly in Japan, the α -particle emitting radionuclide astatine-211 (²¹¹At) has garnered significant attention for its use in TAT.

One of the crucial challenges in TAT is the delivery of ²¹¹At to the tumor tissues. In a previous study, we discovered that ²¹¹At could be efficiently incorporated into gold nanoparticles (AuNPs) through a simple mixing process for 5 min, leading to a high radiochemical yield (RCY) without the need for purification. Furthermore, our research revealed that the intratumoral administration of ²¹¹At-AuNPs effectively suppresse tumor growth and demonstrate the stability of ²¹¹At-AuNPs in the body.¹) For systemic metastatic tumors, intravenous injection is a promising method of delivery. In this study, we investigated the substantial potential of AuNPs as carriers for the targeted delivery of ²¹¹At via intravenous administration.

 211 At was produced at RIKEN using a short-lived RI supply platform. The separation and purification of 211 At was achieved through dry distillation. Four types of functional AuNPs were synthesized through surface modification using methoxy polyethylene glycol (mPEG) or tumor-targeting peptides (H16 or RGD). The astatine labeling reaction was evaluated using centrifugation, as described previously.¹)

Tumor xenograft models were established thorough the subcutaneous transplantation of human pancreatic cancer cells (PANC-1) in BALB/c-nu/nu mouse. Four types of ²¹¹At-AuNPs were administered to PANC-1 xenograft mice to evaluate their biodistribution at 3 and 24 h. The treatment effect of 5 nm ²¹¹At-AuNPs@mPEG was evaluated using the PANC-1 xenograft model. All the animal experiments were conducted according to the guidelines of the Animal Research: Reporting In Vivo Experiments and the Osaka University Animal Experiment Regulations, and approved by the Osaka University Animal Experiment Committee.

Four types of $^{211}\mathrm{At}\-$ labeled functional AuNPs (5 nm $^{211}\mathrm{At}\-$ AuNPs@mPEG, 30 nm $^{211}\mathrm{At}\-$ AuNPs@mPEG,

5 nm 211 At-AuNPs@H16, and 5 nm 211 At-AuNPs@ H16/RGD), as shown in Fig. 1, can be labeled with 211 At in a high RCY.

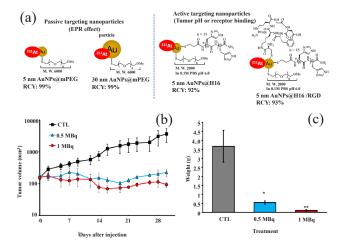


Fig. 1. (a) Four types of ²¹¹At-labeled functional AuNPs designed for the study. (b) Change in the tumor size following the administration of 5 nm ²¹¹At-AuNPs@mPEG or control (CTL) (saline). (c) Weight of enucleated tumors 30 d after injection.

The in *vivo* biodistribution results indicated a higher accumulation of 5 nm 211 At-AuNPs@mPEG in tumors (2.25%ID/g) in 3 h when compared with 30 nm 211 At-AuNPs@mPEG based on the enhanced permeability and retention (EPR) effect with a long retention time in tumors for 24 h. The intravenous administration of 5 nm 211 At-AuNPs@mPEG was found to significantly inhibit tumor growth in a pancreatic cancer model.

Gold nanoparticles (AuNPs) are an ideal carrier for 211 At delivery, owing to their facile and efficient synthesis processes and high stability. The results of this study indicate that the intravenous administration of 5 nm 211 At-AuNPs@mPEG exhibits a potent antitumor effect. These results provide a novel framework for the design of nanoparticles suitable for targeted alpha-particle therapy via intravenous injection.²⁾

References

- 1) H. Kato et al., J. Nanobiotechnology 19, 1 (2021).
- 2) X. Huang et al., Pharmaceutics 14, 2705 (2022).

[†] Condensed from the article in Pharmaceutics **14**, 2705 (2022)

^{*1} Graduate School of Science, Osaka University

^{*2} Institute for Radiation Sciences, Osaka University

 $^{^{\}ast 3}$ $\,$ Forefront Research Center, Osaka University

^{*4} Graduate School of Medicine, Osaka University

^{*5} Osaka Aoyama University

^{*6} RIKEN Nishina Center