Preparation of a small high-density ²²⁹Th target for the X-ray pumping of the ²²⁹Th nuclear clock isomer

Y. Shigekawa,^{*1} K. Okai,^{*2} Y. Fukunaga,^{*2} K. Yoshimura,^{*2} and H. Haba^{*1}

The first excited state of the 229 Th nucleus (229m Th) has an excitation energy of $\sim 8.3 \text{ eV}^{(1)}$ which allows laser excitation and spectroscopy of the nucleus. One application is ultraprecise nuclear clocks with unprecedented uncertainty.²⁾ Our group aims to observe the γ -rays emitted from ^{229m}Th, which is an important step for realizing nuclear clocks. In 2019, we succeeded in actively producing 229m Th by populating the 29.2-keV second excited state of ²²⁹Th using X-rays at SPring- $8^{(3)}$ With this technique, we are now trying to detect γ rays of 229m Th produced in a 229 Th-doped CaF₂ crystal, in which the internal conversion process of 229m Th would be inhibited. For every beamtime at Spring-8, we have to precisely adjust the energy of X-rays for the resonant excitation of ²²⁹Th to the 29.2-keV state. For the energy adjustment, we have used a source containing 0.24 μ g of ²²⁹Th placed in a hole with a diameter of 0.4 mm on a graphite plate. Owing to the small amount of ²²⁹Th, searching for the resonant X-ray energy has required more than 14 h. The above 229 Th source was prepared by performing the \sim 7000 sets of dropping a small amount of 229 Th solution (5 nL per drop) into the hole and evaporating it by heating. The amount of ²²⁹Th that can be poured into the small hole was limited because the nanoscale drop was not stable and the density of the 229 Th sample was lower than expected, probably owing to the repeated rapid evaporation processes. In this study, we developed a new simple method and successfully prepared a small high-density ²²⁹Th source, which is used to search for the resonant X-ray energy for the 29.2-keV state.

The new source-preparation method is drying one drop (~1 μ L) of nitric acid containing ²²⁹Th on a Teflon plate. Owing to the high water repellency of Teflon, the shape of the drop remains spherical during the evaporation process, and the drop size becomes much less than 1 mm just before it is completely dried. We prepared two types of Teflon plates shown in Fig. 1. The type A plate has a small taper hole made by drilling, where the ²²⁹Th solution is dropped. The hole in the type B plate was manually prepared by heating the Teflon plate and deforming it with a conical die. We found that a drop on the type B plate was evaporated and retained a spherical shape. In contrast, a drop on the type A plate slightly expanded, and the size of the residues became larger than 1 mm. The images obtained by scanning electron microscopy (SEM) for the type A plate (Fig. 2) showed scratches made by

Fig. 1. Schematics of the Teflon plates of types A (left) and B (right).

Fig. 2. SEM images of the Teflon plates of types A (left) and B (right).

drilling, which would be the reason for the lower water repellency. The type B plate showed a smooth surface (Fig. 2); thus, we adopted the type B plate to prepare the ²²⁹Th source.

²²⁹Th was first purified via anion exchange chromatography using high-purity acids (metal impurities <100 ppt). The purified ²²⁹Th was dissolved with 10 μ L of 1-M HNO₃. The solution was dropped on a Teflon sheet and evaporated. Then, the residue was dissolved with 1 μ L of 1-M HNO₃ and dropped on the type B plate placed on a hot plate. We washed the Teflon sheet with 1 μ L of 1-M HNO₃, which was then added to the drop on the type B plate. The temperature of the hot plate was first maintained at $\sim 45^{\circ}$ C for 20 min to slowly evaporate the majority of the solution. It was then increased to $\sim 120^{\circ}$ C over 11 min and maintained at that temperature for 9 min. The temperature was then raised to 200°C over 13 min and maintained at that temperature for 19 min for complete dryness.

The ²²⁹Th source shown in Fig. 3 had a residue with a diameter of ~0.7 mm. The amount of ²²⁹Th in the source was measured to be $1.61(2) \ \mu g$ by γ -ray spectroscopy, which is 6.7 times larger than the amount of the previous ²²⁹Th source that we have used.³⁾ Xray fluorescent measurements performed at SPring-8 showed that a large amount of ²²⁹Th was condensed within a diameter of 0.65 mm. By using this new ²²⁹Th source, we were able to finish the X-ray en-

^{*1} RIKEN Nishina Center

 $^{^{\}ast 2}~$ Research Institute for Interdisciplinary Science, Okayama University

ergy search for the excitation to the 29.2-keV state four times faster than that for the previous source.

Fig. 3. Photograph of the prepared 229 Th target.

References

- 1) B. Seiferle *et al.*, Nature **573**, 243 (2019).
- 2) E. Peik et al., Europhys. Lett. 61, 181 (2003).
- 3) T. Masuda et al., Nature 573, 238 (2019).