Online solid-liquid extraction of 255 No with the polymer-supported crown ether

E. Watanabe,^{*1,*2} R. Nakanishi,^{*1,*2} S. Otaka,^{*1,*2} R. Wang,^{*1,*2} Y. Itakura,^{*2,*3} R. Masuda,^{*1,*2} Y. Shigekawa,^{*2}
A. Nambu,^{*2} X. Yin,^{*2} T. Yokokita,^{*4} H. Haba,^{*2} A. Shinohara,^{*1,*5} and Y. Kasamatsu^{*1,*2}

Nobelium (No) is an actinide element with an atomic number of 102. In aqueous solutions, No is considered to form a +2 valence state stably, while other fblock elements are stable at +3 or higher valence states. Previous ion-exchange experiments have reported that No exhibits similar chemical behavior to that of Ca²⁺ and Sr²⁺.¹⁾ Our group has recently demonstrated that No²⁺ shows different coprecipitation behavior from alkaline earth metal ions, using the samarium hydroxide coprecipitation method.²⁾ Further systematic studies are needed on No²⁺ compared with the group II elements from the viewpoint of molecular structure in the solution and its electronic structure.

We focus on solid-liquid extraction using the polymersupported crown ether. The Sr resin (Eichrom Inc.) contains 4,4'(5')-di-tertbutylcyclohexano-18-crown-6 ether (DtBuCH18C6) and has strong extraction selectivity for Sr^{2+} . The selectivity of alkaline earth ion is affected by a changes in the acidity of a liquid phase and its concentration.^{3,4}) In the extraction in HNO_3 system, the extracted species of Sr is deduced to be $Sr(NO_3)_2DtBuCH18C6.^{5}$ Previously, we found that the extraction reaction of alkaline earth elements with the Sr resin rapidly ($\sim 1 \text{ min}$) reached the equilibrium state and the solid-liquid extraction is suitable for 255 No experiment. We have obtained the distribution coefficients (K_d) of Ca, Sr, Ba, and Ra with the Sr resin in HNO_3 , HCl, and $HClO_4$ as comparison data for No.

In this work, we performed online solid-liquid extraction experiments with 255 No to obtain its K_d values and to investigate the complexation between No²⁺ and Dt-BuCH18C6. To obtain the K_d values of No under equilibrium state, we used a batch-type solid-liquid extraction apparatus called AMBER.⁶⁾

We produced ²⁵⁵No $(T_{1/2} = 211 \text{ s})$ and ¹⁶²Yb $(T_{1/2} = 18.9 \text{ min})$ by the ²⁴⁸Cm $(^{12}\text{C}, 5n)^{255}$ No and ^{nat}Gd $(^{12}\text{C}, xn)^{162}$ Yb reactions with the AVF cyclotron at RIKEN. The reaction products were transported by the He/KCl gas-jet system to the chemistry room and dissolved in 3.5 MHNO₃ or 7.6 M HCl solutions. The solution sample was injected into a chemical reaction container containing the Sr resin. After shaking the container for 60 or 180 s, only the solution phase was discharged from the container through a PTFE filter. Subsequently, the discharged sample was evaporated to dryness and subjected to alpha particle measurement by

*³ School of Science, Osaka University
 *⁴ Sologian Deletechnic

*⁵ Osaka Aoyama University

the automated rapid α /SF detection system.

After α -particle measurement, we measured γ -ray activities of ¹⁶²Yb in the samples with Ge detectors to calculate the chemical yield of each extraction.

We carried out 48 extraction and 24 control cycles and observed a total of 173 α events from the decay of ²⁵⁵No, as shown in Fig. 1. The production cross-section of ²⁵⁵No was estimated to be approximately 500 nb, and the value is consistent with that determined in the previous report.⁷⁾ The half-life of ²⁵⁵No was estimated to be 212 ± 24 s, which is in good agreement with the previously reported value $(211 \pm 11 \text{ s})$.⁸⁾ The $K_{\rm d}$ value of ^{154, 155}Er and $^{254, 255}$ Fm (byproduct α -emitters) is $\sim 1 \text{ mLg}^{-1}$, which is within the value of other f-block elements previously reported.⁴⁾ Thus, it was demonstrated that the α events in the region of interest for 255 No in the α -particle spectrum properly originate from only ²⁵⁵No and that reliable $K_{\rm d}$ values were obtained in the present solid-liquid extraction experiments using AMBER. The $K_{\rm d}$ values of No are under estimation.

Fig. 1. α -spectrum for ²⁵⁵No obtained in control experiment without the resin with 60-s shaking.

In the future, we will discuss the extraction behavior of No based on the comparison of the $K_{\rm d}$ values of 255 No with those of alkaline earth metal ions. Additionally, we will perform relativistic quantum chemical calculations and analyze the electronic states of extracted species of No.

References

- 1) R. J. Silva et al., J. Inorg. Nucl. Chem. 38, 1207 (1976).
- H. Ninomiya *et al.*, RIKEN Accel. Prog. Rep. **52**, 184 (2019).
- 3) E. P. Horwitz et al., Solv. Extr. Ion Exch. 10, 313 (1992).
- 4) D. V. Filosofov *et al.*, Solv. Extr. Ion Exch. **33**, 496 (2015).
- 5) M. L. Dietz et al., Talanta 62, 109 (2004).
- 6) Y. Kasamatsu et al., Radiochim. Acta 103, 513 (2015).
- 7) T. Sikkeland *et al.*, Phys. Rev. **172**, 1232 (1968).
- 8) M. Asai et al., Phys. Rev. C 83, 1 (2011).

^{*1} Graduate School of Science, Osaka University

^{*2} RIKEN Nishina Center

^{*4} Salesian Polytechnic