D. P. Sari,^{*1} H. Yamauchi,^{*2} A. E. Hall,^{*3} K. M. Kojima,^{*4} D. Arseneau,^{*4} G. Morris,^{*4} B. Hitti,^{*4} A. Berlie,^{*5} I. Watanabe,^{*6} P. -T. Hsu,^{*7} Y. -S. Chen,^{*8} M. K. Lee,^{*7} B. Geetha,^{*3} L. -J. Chang,^{*7,*9} and S. Shamoto^{*7,*10,*11}

We found a magnetic short-range order (SRO) in a hyperkagome lattice alloy of Mn_3RhSi up to 720 K.¹⁾ The onset temperature is the highest among any magnets, to our knowledge. Because of the historical record, the magnetic cluster may be topologically protected in a paramagnetic state. To reveal the possible mechanism, we have studied Mn₃TX (T: Co, Rh, and Ir, X: Si and Ge) family alloys by μ SR, where the cubic lattice parameter varies together with the electronic bandwidth. The lattice parameter of Mn_3CoSi is close to that of β -Mn, which is known as a non-Fermi liquid and spin-liquid candidate compound.^{2,3)} The β -Mn is also the heavy electron metal ($\gamma = 70 \text{ mJ/Mn K}^2$).³⁾ Mn₃CoSi with the smallest cubic lattice parameter (a = 6.26 Å) locates near the quantum critical point, then with increasing the cubic lattice parameter, the magnetic transition temperature increases, and the electronic specific heat γ decreases in the Mn₃TX system. In the case of Mn₃RhSi with a lattice parameter of a = 6.45 Å, the Néel temperature $T_{\rm N}$ becomes 190 K and γ decreases to 12.1 mJ/Mn K^2 . Our magnetic pair distribution function analysis revealed that the magnetic SRO originated from the other magnetic structure different from the long-range order (LRO) magnetic structure.⁴⁾ In addition, a similar magnetic SRO is recently discovered in a skyrmion alloy $Co_7 Zn_7 Mn_6$ with the same β -Mn structure.⁵⁾

Here, we report the μ SR result of the single crystal Mn₃CoSi measured at M20 of TRIUMF (M2201) and ARGUS of ISIS (2070006). The transverse field (TF) time spectra of Mn₃CoSi were analyzed using a Gaussian damped oscillation function. The temperature dependence in Fig. 1 clearly shows the drop in the initial asymmetry. The onset temperature is about 240 K. Figure 2 shows the phase diagram of the Mn₃TSi system. The result suggests that SRO and LRO temperatures decrease to a quantum critical point. In addition, the initial asymmetry drop also decreases to the quantum critical point. The ratios were about 20% and 1% for Mn₃RhSi and Mn₃CoSi, respectively.

In summary, we have studied Mn_3CoSi crystal by μSR . The SRO and LRO temperatures depend on the lat-

- *² Material Science Research Center, Japan Atomic Energy Agency
- ^{*3} Department of Physics, University of Warwick
- ^{*4} Physical Sciences Division, TRIUMF
- *⁵ RÅL, ISIS
- *6 RIKEN Nishina Center
- ^{*7} Department of Physics, National Cheng Kung University
- *8 National Synchrotron Radiation Research Center (NSRRC)
- ^{*9} Institute of Physics, Academia Sinica Academia Sinica
- ^{*10} Comprehensive Research Organization for Science and Society (CROSS)
- *¹¹ Advanced Science Research Center, Japan Atomic Energy Agency

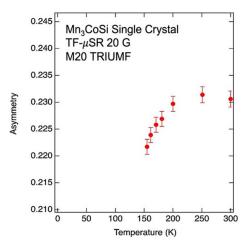


Fig. 1. Initial asymmetry obtained from the Mn₃RhSi single crystal under a transverse magnetic field of 20 G.

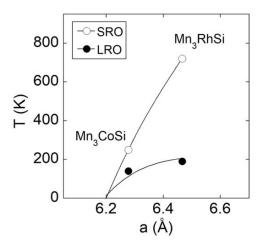


Fig. 2. Tentative phase diagram of Mn₃TSi system.

tice parameter, suggesting the bandwidth effect. To further explore the magnetic SRO, it is necessary for us to study Mn₃IrSi with a lattice parameter of a = 6.50 Å by μ SR. These alloys have spiral structures of Mn triangular units, resulting in the noncentrosymmetric space group. Neutron scattering measurements may be required to study further the magnetic SRO related to a topological magnetic cluster by using single crystals. We acknowledge the present μ SR measurements at M20 of TRIUMF (M2201) in 2022 and ARGUS of ISIS (2070006) in 2020.

References

- 1) H. Yamauchi et al., Commun. Math. Phys. 1, 43 (2020).
- 2) J. R. Stewart et al., Phys. Rev. Lett. 89, 186403 (2002).
- H. Nakamura *et al.*, J. Phys. Condens. Matt. 9, 4701 (1997).
- 4) K. Kodama et al., J. Phys. Soc. Jpn. 90, 074710 (2021).
- 5) V. Ukleev et al., npj Quantum Mater. 6, 40 (2021).

^{*1} Department of Physics, Shibaura Institute of Technology