In-beam γ -ray spectroscopy of exotic ⁷⁹Cu with HiCARI

M. Kaci,^{*1} S. Franchoo,^{*1} R. Taniuchi,^{*3,*2} D. Suzuki,^{*2} N. Aoi,^{*4,*2} H. Baba,^{*2} F. Browne,^{*2} C. M. Campbell,^{*5} S. Chen,^{*3,*6} R. Crane,^{*3,*2} H. L. Crawford,^{*5} H. De Witte,^{*7,*2} P. Doornenbal,^{*2} C. Fransen,^{*8} N. Fukuda,^{*2}

H. Hess, *8,*2 E. Ideguchi, *4,*2 S. Iwazaki, *4,*2 J. Kim, *9 A. Kohda, *4,*2 T. Koike, *10,*2 T. Koiwai, *11,*2

B. Mauss, *² R. Mizuno, *^{11,*2} B. Moon, *² M. Niikura, *^{11,*2} D. Nishimura, *^{12,*2} T. Parry, *^{13,*2} M. Petri, *³

P. Reiter,^{*8} H. Sakurai,^{*11,*2} Y. Shimizu,^{*2} H. Suzuki,^{*2} H. Takahashi,^{*12,*2} H. Takeda,^{*2} S. Thiel,^{*8} K. Wimmer,^{*14,*2} Y. Yamamoto,^{*4,*2} and M. Yoshimoto^{*2} for the RIBF 181 Collaboration

⁷⁸Ni is an emblematic nucleus for the study of nuclear structure far from stability. Although it is expected to have a doubly magic character for proton (Z = 28) and neutron (N = 50) shells, theoretical and experimental studies around this region hint to a weakening of this magicity, with possible shape coexistence phenomena associated with shell quenching in proton and neutron gaps.¹⁾ To address these questions, the RIBF181 experiment aiming at the in-beam γ -ray spectroscopy of nuclei in the vicinity of ⁷⁸Ni was conducted at RIKEN for 7 days in April 2021. In this report, we focus on the analysis of the spectroscopy of ⁷⁹Cu, which contains one proton above the core of 78 Ni.

A wide range of exotic isotopes including ⁸⁰Zn were produced after the induced in-flight fission of a primary beam of ²³⁸U at 345 MeV/nucleon and 90-particle nA on a 4-mm-thick primary beryllium target. These nuclei were sent through the BigRIPS separator onto a secondary 6.8-mm-thick beryllium target, in which knock-out reactions took place. The outgoing fragments including ⁷⁹Cu were subsequently identified in the ZeroDegree spectrometer. The emitted γ -rays were detected by the HiCARI germanium array²⁾ placed around the secondary target. To carry out event-byevent particle identification (PID) of the beam nuclei, we used the combination of the ToF- $B\rho$ - ΔE and twofold $B\rho$ methods in both the BigRIPS and ZeroDegree spectrometers to obtain the atomic number (Z) and mass-to-charge ratio (A/Q). To reduce the number of contaminating events, we applied conditions in correlations within different detectors. The removed events include the δ -electrons in the parallel-plate avalanche counters (PPACs), the changing charge states, and the pile-up events in the plastic scintillators and ionization chambers. The combination of these cuts reduced the

- *2 **RIKEN** Nishina Center
- *3 School of Physics, Electronics and Technology, University of York
- *4 Research Center for Nuclear Physics, Osaka University
- *5 Nuclear Science Division, Lawrence Berkeley National Laboratory
- *6 Department of Physics, University of Hong Kong
- *7 Instituut voor Kern- en Stralingsfysica, KU Leuven
- *8 Institut für Kernphysik, Universität zu Köln
- *9 Department of Physics, Korea University
- *10 Department of Physics, Tohoku University
- *11 Department of Physics, University of Tokyo
- *12Department of Natural Sciences, Tokyo City University
- *¹³ Department of Physics, University of Surrey
- *14 IEM-CSIC

total number of events during PID in BigRIPS by 11%.

To enhance the A/Q resolution, we applied optical corrections up to the third order using a multidimensional fit to eliminate the dependencies of the A/Q values on the position and angular variables at different focal planes. This resolution improved from 0.11% to 0.08% in BigRIPS for $^{80}\mathrm{Zn}$ isotopes and from 0.22% to 0.15% in ZeroDegree for ⁷⁹Cu isotopes.

The cores and segments of the 10 available germanium clusters (4 Miniballs, 4 Clovers, P3, and Quad) were calibrated in energy with sources of ⁶⁰Co, ¹⁵²Eu, ¹³³Ba, and ⁸⁸Y. A preliminary Doppler correction of the γ -ray energy for the 80 Zn(9 Be, X) 79 Cu channel was applied. Figure 1 shows the spectrum of the Miniballs and Clovers. This was produced using the photogrammetry positions of the detectors and a fixed velocity at the target center. The latter was estimated using the mean values of the measured velocity distributions in BigRIPS and ZeroDegree and LISE++ simulations to correct for the energy loss in the intermediate materials upstream and downstream from the target. In this γ -spectrum, the 656 keV transition³⁾ from the first $(3/2^{-})$ excited state to the $(5/2^{-})$ ground state can already be confirmed. We foresee to optimize the Doppler correction by using an event-by-event velocity and apply γ - γ coincidences to find the remaining transitions and reconstruct the resulting level scheme.

Doppler corrected gamma spectrum with HICARI

Fig. 1. Preliminary Doppler corrected γ spectrum of ⁷⁹Cu.

References

- 1) R. Taniuchi et al., Nature 569, 53 (2019).
- 2) K. Wimmer et al., RIKEN Accel. Prog. Rep. 54, S27 (2021).
- 3) L. Olivier et al., Phys. Rev. Lett. 119, 192501 (2017).

^{*1} Laboratoire Irène Joliot Curie, Université Paris Saclay