Observation of low-lying dipole states in the ${}^{11}\text{Li}(p,n)$ reaction

L. Stuhl,^{*1,*2,*3} M. Sasano,^{*3} J. Gao,^{*3,*4} Y. Hirai,^{*5} K. Yako,^{*2} T. Wakasa,^{*5} D. S. Ahn,^{*3} H. Baba,^{*3}

L. Stuhl,^{*1,*2,*3} M. Sasano,^{*3} J. Gao,^{*3,*4} Y. Hirai,^{*5} K. Yako,^{*2} T. Wakasa,^{*5} D. S. Ahn,^{*3} H. Baba,^{*3} A. I. Chilug,^{*6,*3} S. Franchoo,^{*7} Y. Fujino,^{*8} J. Gibelin,^{*9} I. S. Hahn,^{*1,*10} Z. Halász,^{*11} T. Harada,^{*12} M. N. Harakeh,^{*13,*14} D. Inomoto,^{*5} T. Isobe,^{*3} H. Kasahara,^{*5} D. Kim,^{*1,*15} G. G. Kiss,^{*11} T. Kobayashi,^{*16,*3} Y. Kondo,^{*17,*3} Z. Korkulu,^{*1,*3} S. Koyama,^{*18,*3} Y. Kubota,^{*3} A. Kurihara,^{*17} H. N. Liu,^{*19} M. Matsumoto,^{*17} S. Michimasa,^{*2} H. Miki,^{*17,*3} M. Miwa,^{*20,*3} T. Motobayashi,^{*3} T. Nakamura,^{*17,*3} M. Nishimura,^{*3} H. Otsu,^{*3} V. Panin,^{*3} S. Park,^{*10} A. T. Saito,^{*17,*2} H. Sakai,^{*3} H. Sato,^{*3} T. Shimada,^{*17} Y. Shimizu,^{*3} S. Shimoura,^{*2} A. Spiridon,^{*6} I. C. Stefanescu,^{*6} X. Sun,^{*3,*4} Y. L. Sun,^{*19} H. Suzuki,^{*3} E. Takada,^{*17} K. Yoneda,^{*3} K. Yoshida,^{*3} J. Zenihiro,^{*3} and N. Zhang^{*22,*2}

The SAMURAI30 experimental program aims to systematically investigate the isovector response of light nuclei near the neutron drip line.¹⁾ No data are available on spin-isospin collectivity for nuclei with large isospin asymmetry factors, where (N - Z)/A > 0.25. Gamow-Teller (GT) and spin-dipole (SDR) transitions, including their giant resonances, were studied on ¹¹Li and ¹⁴Be using charge-exchange (p,n) reactions in inverse kinematics combined with the missing-mass technique.²⁾ The setup of the PANDORA low-energy neutron timeof-flight counter³⁾ and SAMURAI magnetic spectrometer,⁴⁾ as well as a thick liquid hydrogen target, enables us to perform measurements with high luminosity. In our previous experiments at RIKEN RIBF on 132 Sn, we successfully demonstrated⁵) that we can obtain data on unstable nuclei in the giant-resonance region with similar statistics as data obtained on stable nuclei.

Preliminary results on GT giant resonance are already detailed in a previous report.⁶⁾ More than fifteen different decay channels were identified for the ¹¹Be reaction product. A strong GT transition at 19 MeV, in agreement with previous beta-decay studies, was observed. We showed experimental evidence for the GT peak shifting below the Isobar Analog State (IAS).

In ¹¹Be,¹⁰Be, and ⁹Be related decay channels, lowlying states were also identified in the excitation energy

- *1 Center for Exotic Nuclear Studies, Institute for Basic Science
- *2 Center for Nuclear Study, University of Tokyo
- *3 **RIKEN** Nishina Center
- *4 School of Physics, Peking University
- *5 Department of Physics, Kyushu University
- *6Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering
- *7 Institut de Physique Nucléaire, Université Paris-Saclay
- *8 Department of Physics, Rikkyo University
- *9 Nuclear Physics Laboratory, LPC CAEN
- *10Department of Physics, Ewha Womans University
- *11Institute for Nuclear Research (ATOMKI)
- *12 Department of Physics, Toho University
- $^{\ast 13}$ Department of Physics, University of Groningen
- *14 GSI Helmholtzzentrum für Schwerionenforschung
- $^{\ast 15}$ Department of Physics, Korea University
- *¹⁶ Department of Physics, Tohoku University
- *¹⁷ Department of Physics, Tokyo Institute of Technology
 *¹⁸ Department of Physics, University of Tokyo
- *¹⁹ Départment de Physique Nucléaire, CEA, Université Paris-Saclay
- *²⁰ Department of Physics, Saitama University
- *²¹ National Institute of Radiological Sciences (NIRS)
- *22 Institute of Modern Physics, Chinese Academy of Sciences

Fig. 1. Low-living dipole states in excitation energy spectrum in the $4^{\circ}-6^{\circ}$ (a) and $8^{\circ}-10^{\circ}$ (b) center-of-mass angular bins for beryllium-related decay channels.

range below 10 MeV. The angular-momentum distributions of these states show a peak at backward angles, which is characteristic of dipole transitions. Similar lowlying SD states were predicted in previous theoretical calculations on ¹¹Li by Suzuki⁷) in connection to the neutron-halo structure.

References

- 1) L. Stuhl et al., RIKEN Accel. Prog. Rep. 48, 54 (2015).
- 2) M. Sasano et al., Phys. Rev. Lett. 107, 202501 (2011).
- 3) L. Stuhl et al., Nucl. Instrum. Methods Phys. Res. A 866, 164 (2017).
- 4) T. Kobayashi et al., Nucl. Instrum. Methods Phys. Res. B **317**, 294 (2013).
- 5) J. Yasuda et al., Phys. Rev. Lett. 121, 132501 (2018).
- 6) L. Stuhl et al., RIKEN Accel. Prog. Rep. 53, 38 (2019).
- 7) T. Suzuki et al., Nucl. Phys. A 662, 282 (2000).