Investigation of the usability of RIKEN ^{44m}Sc for radiolabeling on chelate-compounds S. Oshikiri,*1,*2 S. Kubota,*1,*2 H. Kato,*1,*2 T. Yokokita,*1 K. Suzuki,*1,*2 A. Hino,*2 and H. Haba*1 Scandium-44m (44m Sc) with a half-life of 58.61 h decays to scandium-44 (44 Sc) with a half-life of 3.97 h by emitting gamma rays. 44 Sc has been reported to be a promising radioisotope (RI) in positron emission tomography imaging, while 47 Sc, which emits a beta particle, is proposed as a promising therapeutic nuclide. $^{1)}$ Furthermore, 44m Sc appears to be useful as an imaging RI $^{2)}$ and a surrogate nuclide for other Sc isotopes in basic science research because of a relatively long half-life. A study on the optimization of 44m Sc radiolabeling of macrocyclics-functionalized biomolecules has been published. $^{3)}$ We have been developing a production method of $^{44\mathrm{m}}\mathrm{Sc}$ via the nuclear reaction $^{44}\mathrm{Ca}(d,2n)^{44\mathrm{m}}\mathrm{Sc}$ at the RIKEN AVF cyclotron and distributing purified $^{44\mathrm{m}}\mathrm{Sc}$ (RIKEN $^{44\mathrm{m}}\mathrm{Sc}$) to users. 4 To confirm the quality of the RIKEN $^{44\mathrm{m}}\mathrm{Sc}$ for research on radiolabeling, we performed $^{44\mathrm{m}}\mathrm{Sc}$ radiolabeling on chelate-compounds in this study. To investigate the structural effect of chemical-compounds on $^{44\mathrm{m}}\mathrm{Sc}$ radiolabeling, four commercially available compounds were selected: DOTA-Substance P (DOTA-SP), DOTA-RGD₂, NOTA-RGD₂ and NODAGA-RGD₂. The operations for $^{44\mathrm{m}}\mathrm{Sc}$ radiolabeling are as described below. - Step 1: RIKEN ^{44m}Sc (9.1 MBq) was dissolved in 0.05 M hydrochloric acid to prepare a ^{44m}Sc solution (79 MBq/mL). The radioactivity of ^{44m}Sc was determined using a germanium semiconductor detector. - Step 2: Each chelate-compound was dissolved in 0.75 M sodium acetate buffer at pH3.0, 4.0, 5.0, and 6.0 to prepare 1.4×10^{-4} M sample solutions. - Step 3: 1.5 μ L of the ^{44m}Sc solution was added to 3 μ L of each sample solution: the specific radioactivity of each sample solution was 0.29 MBq/nmol. - Step 4: The mixtures in Step 3 were heated at 97°C for 10 min and kept at 20°C for 5 min. - Step 5: Radiolabeling yields of $^{44\mathrm{m}}$ Sc-labeled compounds were determined using thin-layer chromatography (TLC) with a C18 reverse phase TLC plate (NAGEL RP-18W/UV254), which was eluted with a mixture of acetonitrile, 0.5 M ammonium acetate, methanol, and tetrahydrofuran in a volume ratio of 4:3:2:1 using an image analyzer. Consequently, the radiolabeling yields of each compound were over 90% at pH 5.0–6.0, although they were different from each other at lower pH values. In case of compounds with the same affinity moiety, DOTA- Fig. 1. Relation between pH value of acetate buffer and radiolabeling yield (%) of $^{44\text{m}}$ Sc-labeled compounds at 0.29 MBq/nmol (n=1). RGD_2 was radiolabeled over 70% at pH 3.0 which was higher than that of NODAGA-RGD₂ and NOTA-RGD₂. It has been reported that the suitable pH range for ^{44m}Sc labeling with DOTA-based ligands is from 4 to 5.5.³⁾ The result obtained in our study was consistent with the result of the previous study. Moreover, regarding the difference in reactivity among chelators, one report shows that DOTA is a better chelator than NODAGA because NODAGA is more susceptible to contamination metals than DOTA.⁵⁾ Another report shows that the thermodynamic stability of Sc-DOTA is high compared to that of Sc-NOTA.⁶⁾ These reports are consistent with our radiolabeled result at pH 3.0. Hence, these results support the possibility of further radiolabeling studies using RIKEN ^{44m}Sc. We investigated the possibility of RIKEN $^{44\rm m}{\rm Sc}$ for radiolabeling studies and compared our results with those of previous reports of Sc radioisotopes. In addition, the pH responsiveness of the $^{44\rm m}{\rm Sc}$ radiolabeling yield to compounds having different chelating sites was confirmed. In future, we plan to optimize the radiolabeling condition of Sc isotopes, such as $^{44}{\rm Sc}$, which is eluted from the $^{44}{\rm Ti}/^{44}{\rm Sc}$ generator, and conduct a feasibility study for imaging tracer with $^{44\rm m}{\rm Sc}$. ## References - 1) C. Müller et al., J. Nucl. Med. 55, 1658 (2014). - T. Fukuchi *et al.*, RIKEN Accel. Prog. Rep. **53**, 21 (2020). - 3) S. Huclier-Markai et al., Nucl. Med. Biol. 41, e36 (2014). - 4) H. Haba, Drug Deliv. Syst. 35, 114 (2020). - K. A. Domnanich et al., EJNMMI Radiopharm. Chem. 1, 8 (2016). - 6) S. Huclier-Markai et al., Radiochim. Acta 99, 653 (2011). ^{*1} RIKEN Nishina Center ^{*2} RI Research Department, FUJIFILM Toyama Chemical Co., Ltd