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Hole-doping effect on the magnetic correlation in the undoped
(Ce-free) superconductor T’-La1.8Eu0.2CuO4 studied by μSR

T. Kawamata,∗1,∗2 T. Sunohara,∗2 K. Shiosaka,∗2 T. Nagaoka,∗2 T. Adachi,∗1,∗3 M. Kato,∗2 I. Watanabe,∗1 and
Y. Koike∗1,∗2

The electronic state of the high-Tc cuprate
Ln2CuO4 (Ln: lanthanide elements) with the
Nd2CuO4-type (so-called T’-type) structure has at-
tracted great interest, because adequately oxygen-
reduced samples of T’-Ln2CuO4 have been reported to
show superconductivity without electron-carrier dop-
ing.1,2) Regarding the electron-doped (Ce-doped) high-
Tc superconductors T’-Ln2−xCexCuO4, it has been
believed since their discovery that superconductivity
appears at x > 0.14, while an antiferromagnetic (AF)
long-range order is developed in oxygen-reduced sam-
ples with x < 0.14.3) Hence, the reason why supercon-
ductivity emerges without carrier doping in the un-
doped (Ce-free) superconductor T’-Ln2CuO4 has yet
to be clarified.
Two reasons have been suggested for the elec-

tronic state of the undoped superconductivity in T’-
Ln2CuO4. One is a strongly correlated metallic state
without a charge-transfer (CT) gap between the up-
per Hubbard band (UHB) of Cu3dx2−y2 and the O2p

band.4) In this case, the half-filled Fermi surface with
a good nesting condition is formed from UHB of
Cu3dx2−y2 and the O2p band, indicating a strong AF
correlation. Therefore, the AF correlation is expected
to be weakened by electron- and hole-carrier doping,
leading to a bad nesting condition. The other is a
strongly correlated metallic state with a finite CT gap
and the UHB of Cu3dx2−y2 having been doped with
electron carriers due to oxygen defects induced by re-
duction annealing.5) That is, superconductivity ap-
pears due to electron-carrier doping of the Mott insula-
tor. In this case, the AF correlation is expected to arise
due to hole doping corresponding to a decrease in the
electron-carrier concentration. Accordingly, an investi-
gation of changes in the AF correlation caused by hole
doping of the undoped superconductor T’-Ln2CuO4

is expected to reveal why superconductivity emerges
without carrier doping.
We performed muon spin relaxation (μSR) ex-

periments on the polycrystalline samples of T’-
La1.8−xEu0.2SrxCuO4 (x = 0.01, 0.02, 0.03), whereby
the undoped (Ce-free) superconductor
T’-La1.8Eu0.2CuO4 was doped with hole carriers.

It is found that the μSR spectra at high tempera-
tures above 100 K show a Gaussian-type slow depo-
larization of the muon spins and that the μSR spectra
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change to Lorentzian-type fast depolarization gradu-
ally with decreasing temperature for all x. The de-
polarization at low temperatures is the slowest for
x = 0.03 in all samples, indicating that the AF cor-
relation becomes weak at x = 0.03. The AF transi-
tion temperature, TN, is estimated from the analysis
of the μSR spectra and is plotted together with TN

of the electron-doped and undoped superconductors
T’-La1.8Eu0.2CuO4−yFy

6) in Fig. 1. It is found that
TN has a maximum for x = 0.01 and it decreases by
both hole and electron doping. These results are in-
compatible with a finite CT-gap model in which TN

increases with Sr substitution of the AF Mott insula-
tor. Therefore, the present results suggest that the
electronic state of the undoped superconductor T’-
La1.8Eu0.2CuO4 is a strongly correlated metallic state
without a CT gap.4)
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Fig. 1. Doped-carrier concentration dependence of the

magnetic transition temperature, TN, of T’-La1.8−xEu0.2

SrxCuO4 and T’-La1.8Eu0.2CuO4−yFy.
6) Green solid

circles indicate the critical temperature, Tc, of T’-

La1.8−xEu0.2SrxCuO4
2) and T’-La1.8Eu0.2CuO4−yFy.

7)

Solid line is guide for the eyes. Arrows indicate that

samples are not antiferromagnetic above ∼3.8 K.
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