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μ+SR Knight shift of the Mott insulator κ-(ET)4Hg2.78Cl8
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The hole-doped organic superconductor κ-
(ET)4Hg3-δBr8, (κ-HgBr), where δ = 11% and ET
= bis (ethylenedithio) tetrathiafulvalene, has been the
key to bridge the knowledge gap between half-filled or-
ganics and doped cuprate systems, as the well-known
Mott-Hubbard model in the laboratory. Usually, or-
ganic superconductivity appears under pressure when
the ratio of Hubbard interaction and bandwidth, U/W,
is larger than 1. Nonetheless, the triangular lattice of
organics, unlike the square lattice in cuprates, provides
extensive geometrically control through nearest, t, and
next-nearest, t′, transfer integrals between sites. In the
case of geometrically triangular frustration (t ∼ t′),
the Mott insulating state cannot be magnetically or-
dered down to the miliKelvin (mK) order, becoming
a Mott quantum spin liquid.1) Specifically, both hole-
doped superconductors have a region corresponding to
a strange metallic state at which resistivity exhibits a
linear temperature dependence, ρ ∝ T , which is not a
Fermi-liquid (FL) behavior.1–3)

In 2015, an important model to study strange metal
was developed by Sachdev-Ye-Kitaev (SYK).4,5) It
consists of Majorana fermions with random all-to-
all interactions, leading to quantum information sci-
ence and quantum many-body physics. Although the
realization of the SYK-strange metal remains com-
plex, Tsuji-Werner theoretically found an SYK-strange
metal region after an out-of-time-order correlation
treatment of a multi-band Hubbard model.6) In the
strange metal region, the electron behaves as a system
having a non-FL electronic scattering rate with ρ ∝ T .
In this region, the spin fluctuates strongly while ad-
justing the competition between the localized spin in
the Mott insulating state and the itinerant one in the
FL state, and U/W should be close to unity, which
is known as a quantum critical point (QCP).6) Cha et
al. further showed that when the itinerant spin-1/2
fermions interact via onsite U and random infinite-
ranged spin-spin interaction, the QCP appears with
quantum spin liquid dynamics, identical to that of
SYK-local spin dynamics.7) On the other hand, the
growth of antiferromagnetic spin fluctuations (AFSFs)
towards low temperature without any long-range or-
der can lead to the QCP at which a non-FL behavior
is observed, like in the heavy fermion system.1)

Our experiment8) showed that the time-reversal
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symmetry is preserved in the superconducting state
of κ-HgBr down to 0.3 K, narrowing the similarity
down to that of cuprates despite the triangular lat-
tice. To seek evidence of strong AFSFs towards the
Mott spin-liquid ground state, we also study the sis-
ter insulating compound, which has a different doping
content yet slightly higher U/W than that of κ-HgBr,
κ-(ET)4Hg3-δCl8 (κ-HgCl), with δ = 22%. It shows a
metal-insulator transition at TMI = 20 K and ambient
pressure.
The signature of strong AFSFs has been observed in

κ-HgBr, in which the temperature dependence of μ+

Knight shift, K(T ), is not proportional to that of sus-
ceptibility, χ(T ) in the low-temperature region below
50 K, unlike in other κ-type organic superconductors;
this signature is often found in heavy-fermion system.1)

One possible reason is that μ+ probes a hyperfine cou-
pling constant different from itinerant electrons in the
high-T region and localized electrons. From the linear
part of the K -χ plot from 50 to 300 K, the hyperfine
coupling constant, Ahf , in κ-HgBr was reported to be
166 Oe/μB. If this deviation is a signature of such a
different hyperfine coupling constant, we naively ex-
pect a larger Ahf in κ-HgCl.
We have followed the same experimental condition

to measure the μ+ Knight shift in κ-HgCl with that
of κ-HgBr.9) The measurement was performed using
DC muon beam on the NuTime spectrometer in M15
beamline, TRIUMF Canada, in a field of 6 T. Figure 1
shows the measured μ+SR time spectra after Fourier
transforming. From 300 down to 2 K, the central peak
is gradually shifted to the positive side, and a promi-
nent shift was detected below TMI. K(T ) follows Curie-

Fig. 1. Fourier transform of μ+SR time spectra in the field

of 6 T in κ-(ET)4Hg2.78Cl8 measured at several tem-

peratures, represented by colorful lines, from 276–2 K.
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Weiss paramagnetic behavior well while χ(T ) has a
broad peak at 70 K. From the linear region of the K -χ
plot above 100 K, our preliminary analysis obtained
Ahf = 230(20) Oe/μB. The value is about 40% larger
than that of κ-HgBr. Next, we are going to study the
spin dynamics of κ-HgCl down to the mK order.
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