TDPAD measurement for the 10^{-}isomer of ${ }^{98} \mathrm{Y}$

J. M. Daugas, ${ }^{* 1, * 2, * 3}$ F. Boulay, ${ }^{* 1, * 2, * 4}$ Y. Ichikawa, ${ }^{* 2}$ A. Takamine, ${ }^{* 2}$ D. S. Ahn, ${ }^{* 2}$ K. Asahi ${ }^{* 2, * 5}$ H. Baba, ${ }^{* 2}$
D. L. Balabanski, ${ }^{* 2, * 6}$ T. Egami, ${ }^{* 2, * 7}$ T. Fujita, ${ }^{* 2, * 8}$ N. Fukuda, ${ }^{* 2}$ C. Funayama, ${ }^{* 2, * 5}$ T. Furukawa, ${ }^{* 2, * 9}$ G. Georgiev, ${ }^{* 10}$ A. Gladkov, ${ }^{* 2, * 11}$ M. Hass, ${ }^{* 12}$ K. Imamura, ${ }^{* 2, * 13}$ N. Inabe, ${ }^{* 2}$ Y. Ishibashi, ${ }^{* 2, * 14}$ T. Kawaguchi, ${ }^{* 2, * 7}$ T. Kawamura, ${ }^{* 8}$ W. Kim, ${ }^{* 11}$ Y. Kobayashi, ${ }^{* 15}$ S. Kojima, ${ }^{* 2, * 5}$ A. Kusoglu, ${ }^{* 10, * 16}$ R. Lozeva, ${ }^{* 10}$ S. Momiyama, ${ }^{* 17}$ I. Mukul, ${ }^{* 12}$ M. Niikura, ${ }^{* 17}$ H. Nishibata, ${ }^{* 2, * 8}$ T. Nishizaka, ${ }^{* 2, * 7}$ A. Odahara, ${ }^{* 8}$ Y. Ohtomo, ${ }^{* 2, * 5}$ D. Ralet, ${ }^{* 10}$ T. Sato, ${ }^{* 2, * 5}$ G. S. Simpson, ${ }^{* 18}$ Y. Shimizu, ${ }^{* 2}$ T. Sumikama, ${ }^{* 2}$ H. Suzuki, ${ }^{* 2}$ H. Takeda, ${ }^{* 2}$ L. C. Tao, ${ }^{2,19}$ Y. Togano, ${ }^{* 5}$ D. Tominaga, ${ }^{* 2, * 7}$ H. Ueno, ${ }^{* 2}$ H. Yamazaki, ${ }^{* 2}$ and X. F. Yang ${ }^{* 20}$

A time-differential perturbed angular distribution (TDPAD) measurement was performed for the 10^{-}isomer ${ }^{98 m}$ Y. The first aim of this experiment was to investigate the single-particle structure and on the wave functions of ${ }^{98 \mathrm{~m}} \mathrm{Y}$, which is located in a region with a rapid change of the ground-state nuclear shape, through the magnetic moment. The second aim was to measure the amount of spin alignment of the isomeric states produced by the abrasion-fission reaction.

Neutron-rich $N=59$ isotones were produced by the abrasion-fission reaction of a primary ${ }^{238} \mathrm{U}$ beam at $345 \mathrm{MeV} /$ nucleon incident on a $100-\mu$ m-thick ${ }^{9} \mathrm{Be}$ target. A thin target was used to avoid the mixing of different momentum distributions if the reaction occurred at the entrance or exit of the target. Figure 1 shows the three selections in the momentum distribution of ${ }^{98} \mathrm{Y}$

Fig. 1. Selections in the momentum distribution of ${ }^{98} \mathrm{Y}$. The distribution shape was estimated by LISE ++ .

[^0]

Fig. 2. (a), (b), and (c) represent the $R(t)$ ratio of ${ }^{98 \mathrm{~m}} \mathrm{Y}$ for selections 1, 2, and 3, respectively. See Refs. 1-2) for the definition of $R(t)$.
at F1. The selected isotones were implanted in a nonperturbating copper host at F8. The TDPAD apparatus located at F8 was same as in Refs. 1-2), and an external magnetic field of 0.250 T was applied.

Figures 2 (a), (b), and (c) show the TDPAD spectra with respect to the momentum distribution, where the highest spin alignment of $17(4) \%$ is located in its outer wing and no spin alignment exists at the center. The g-factor of ${ }^{98 \mathrm{~m}} \mathrm{Y}$ was deduced to be $|g|=0.36(2)$. This value is far from the one expected under the assumption of a $\left(\pi g_{9 / 2} \otimes h_{11 / 2}\right)_{10^{-}}$configuration, where the additivity rules give $g=+0.517$ considering the g-factors of the $9 / 2^{+}$and the $11 / 2^{-}$isomers of ${ }^{97} \mathrm{Y}$ and ${ }^{99} \mathrm{Mo}$, respectively. ${ }^{3,4)}$ The interpretation of this result needs improvement in theoretical calculations for the odd-odd mass isotopes in this interesting region.

References

1) Y. Ichikawa et al., Nature Phys. 15, 321 (2019).
2) F. Boulay et al., Phys. Rev. Lett. 124, 112501 (2020).
3) B. Cheal et al., Phys. Lett. B 645, 133 (2007).
4) J. M. Daugas, private communication.

[^0]: *1 CEA, DAM, DIF
 *2 RIKEN Nishina Center
 *3 LCM, LNE-CNAM
 *4 GANIL, CEA/DSM-CNRS/IN2P3
 *5 Department of Physics, Tokyo Institute of Technology
 *6 ELI-NP, IFIN-HH
 *7 Department of Advanced Sciences, Hosei University
 *8 Department of Physics, Osaka University
 *9 Department of Physics, Tokyo Metropolitan University
 *10 IJCLab, CNRS/IN2P3, Université Paris-Saclay
 *11 Department of Physics, Kyungpook National University
 *12 Department of Particle Physics, Weizmann Institute of Science
 *13 Department of Physics, Meiji University
 *14 Department of Physics, University of Tsukuba
 *15 Department of Informatics and Engineering, University of Electro-Communication
 *16 Department of Physics, Istanbul University
 *17 Department of Physics, University of Tokyo
 *18 LPSC, CNRS/IN2P3, Université Grenoble Alpes
 *19 School of Physics, Peking University
 *20 Instituut voor Kern- en Stralingsfysica, K. U. Leuven

