TDPAD measurement for the 10^{-} isomer of 98 Y

J. M. Daugas,^{*1,*2,*3} F. Boulay,^{*1,*2,*4} Y. Ichikawa,^{*2} A. Takamine,^{*2} D. S. Ahn,^{*2} K. Asahi,^{*2,*5} H. Baba,^{*2}

J. M. Daugas,^{*1,*2,*3} F. Boulay,^{*1,*2,*4} Y. Ichikawa,^{*2} A. Takamine,^{*2} D. S. Ahn,^{*2} K. Asahi,^{*2,*5} H. Baba,^{*2} D. L. Balabanski,^{*2,*6} T. Egami,^{*2,*7} T. Fujita,^{*2,*8} N. Fukuda,^{*2} C. Funayama,^{*2,*5} T. Furukawa,^{*2,*9}
G. Georgiev,^{*10} A. Gladkov,^{*2,*11} M. Hass,^{*12} K. Imamura,^{*2,*13} N. Inabe,^{*2} Y. Ishibashi,^{*2,*14} T. Kawaguchi,^{*2,*7} T. Kawamura,^{*8} W. Kim,^{*11} Y. Kobayashi,^{*15} S. Kojima,^{*2,*5} A. Kusoglu,^{*10,*16} R. Lozeva,^{*10} S. Momiyama,^{*17} I. Mukul,^{*12} M. Niikura,^{*17} H. Nishibata,^{*2,*8} T. Nishizaka,^{*2,*7} A. Odahara,^{*8} Y. Ohtomo,^{*2,*5} D. Ralet,^{*10} T. Sato,^{*2,*5} G. S. Simpson,^{*18} Y. Shimizu,^{*2} T. Sumikama,^{*2} H. Suzuki,^{*2} H. Takeda,^{*2} L. C. Tao,^{2,19} Y. Togano,^{*5} D. Tominaga,^{*2,*7} H. Ueno,^{*2} H. Yamazaki,^{*2} and X. F. Yang^{*20}

A time-differential perturbed angular distribution (TDPAD) measurement was performed for the 10^{-1} isomer 98m Y. The first aim of this experiment was to investigate the single-particle structure and on the wave functions of 98m Y, which is located in a region with a rapid change of the ground-state nuclear shape, through the magnetic moment. The second aim was to measure the amount of spin alignment of the isomeric states produced by the abrasion-fission reaction.

Neutron-rich N = 59 isotones were produced by the abrasion-fission reaction of a primary ²³⁸U beam at 345 MeV/nucleon incident on a 100- μ m-thick ⁹Be target. A thin target was used to avoid the mixing of different momentum distributions if the reaction occurred at the entrance or exit of the target. Figure 1 shows the three selections in the momentum distribution of 98 Y

Fig. 1. Selections in the momentum distribution of $^{98}\mathrm{Y}.$ The distribution shape was estimated by LISE++.

- *1CEA, DAM, DIF
- *2**RIKEN** Nishina Center
- *3 LCM. LNE-CNAM
- *4 GANIL, CEA/DSM-CNRS/IN2P3
- *5 Department of Physics, Tokyo Institute of Technology
- *6 ELI-NP, IFIN-HH *7
- Department of Advanced Sciences, Hosei University
- *8 Department of Physics, Osaka University
- *9 Department of Physics, Tokyo Metropolitan University
- *10 IJCLab, CNRS/IN2P3, Université Paris-Saclay
- *11 Department of Physics, Kyungpook National University *12Department of Particle Physics, Weizmann Institute of Sci-
- ence *¹³ Department of Physics, Meiji University
- *¹⁴ Department of Physics, University of Tsukuba
- *15 Department of Informatics and Engineering, University of Electro-Communication
- *¹⁶ Department of Physics, Istanbul University
- *¹⁷ Department of Physics, University of Tokyo
- *18 LPSC, CNRS/IN2P3, Université Grenoble Alpes
- *19 School of Physics, Peking University
- $^{\ast 20}$ Instituut voor Kern- en Stralingsfysica, K. U. Leuven

Fig. 2. (a), (b), and (c) represent the R(t) ratio of 98m Y for selections 1, 2, and 3, respectively. See Refs. 1–2) for the definition of R(t).

at F1. The selected isotones were implanted in a nonperturbating copper host at F8. The TDPAD apparatus located at F8 was same as in Refs. 1-2), and an external magnetic field of 0.250 T was applied.

Figures 2 (a), (b), and (c) show the TDPAD spectra with respect to the momentum distribution, where the highest spin alignment of 17(4)% is located in its outer wing and no spin alignment exists at the center. The g-factor of ^{98m}Y was deduced to be |g| = 0.36(2). This value is far from the one expected under the assumption of a $(\pi g_{9/2} \otimes h_{11/2})_{10^-}$ configuration, where the additivity rules give g = +0.517 considering the g-factors of the $9/2^+$ and the $11/2^-$ isomers of 97 Y and 99 Mo, respectively.^{3,4)} The interpretation of this result needs improvement in theoretical calculations for the odd-odd mass isotopes in this interesting region.

References

- 1) Y. Ichikawa et al., Nature Phys. 15, 321 (2019).
- 2) F. Boulay et al., Phys. Rev. Lett. 124, 112501 (2020).
- 3) B. Cheal et al., Phys. Lett. B 645, 133 (2007).
- 4) J. M. Daugas, private communication.