A model of the empirical mass formulae of elementary particles

Y. Akiba*1

In the preceding article ${ }^{1)}$ empirical formulae of the masses of charged leptons (e, μ, τ), quarks (t, c, u, b, s, d), and gauge and Higgs bosons $(Z, W$, $H)$ are presented. Here I report a model that can produce these mass formulae.

In the model, there is the minimum duration of time, which is the Planck time $\tau_{p l}=1 / M_{p l}=5.3912 \times$ $10^{-44} \mathrm{sec}$. A term of the action (integral of Lagrangian) of a particle is a wedge product of 48 "primordial actions" (PAs) that are selected from the following 64 PAs:

$$
\begin{array}{r}
S_{P A}=\left\{\frac{1}{6 \pi} I^{\mu} \sigma^{\nu} \tau^{a}, \frac{1}{6 \pi} \varepsilon i, \frac{1}{6 \pi} \varepsilon \tau^{3}, \frac{1}{6 \pi} \varepsilon I^{c} \tau^{3}\right. \\
\left.-\frac{1}{2 \pi} I^{c},-\frac{1}{2 \pi} \varepsilon i, i, I^{c},-\varepsilon, \varepsilon, 1\right\}
\end{array}
$$

The wedge product operator \wedge and orientation operator (sign operator) ε have the following reduction rules:

$$
\begin{gathered}
\hat{\alpha} \wedge \hat{\beta}= \begin{cases}\hat{\alpha} \hat{\beta} & (\hat{\alpha} \hat{\beta}=-\hat{\beta} \hat{\alpha}) \\
0 & (\hat{\alpha} \hat{\beta}=\hat{\beta} \hat{\alpha}),\end{cases} \\
\hat{\alpha} \wedge \hat{\beta} \wedge \hat{\gamma}= \begin{cases}\hat{\alpha} \hat{\beta} \hat{\gamma} & (\hat{\alpha} \hat{\beta}=-\hat{\beta} \hat{\alpha}, \hat{\beta} \hat{\gamma}=-\hat{\gamma} \hat{\beta}, \hat{\gamma} \hat{\alpha}=-\hat{\alpha} \hat{\gamma}) \\
0 & (\text { otherwise }),\end{cases} \\
s \wedge \hat{\alpha}=s \hat{\alpha}, s_{1} \wedge s_{2}=0, \hat{\alpha} \wedge s \wedge \hat{\beta}=s \hat{\alpha} \hat{\beta}, \\
(\varepsilon \wedge)^{n}=2^{n} .
\end{gathered}
$$

Here, s is scalar. Following these rules, a 48 wedge product of PAs, $d S=\hat{s}_{i_{1}} \wedge \cdots \wedge \hat{s}_{i_{48}}$, is reduced to

Table 1. The action of particles per Planck Time.

	$(6 \pi)^{2} \epsilon_{0}$	$(6 \pi) \epsilon_{0}$			ϵ_{0}			
	$i \tau^{3}$	$i \tau^{3}$	i	τ^{3}	1	$i \tau^{3}$	i	1
e	4					1		3
μ	4	-12				27		3
τ	4	-3	3		$1+4$			
ν_{1}	-12	-12						-2
ν_{2}	4		-4				2	
ν_{3}	-12	-12			± 2			
U	-12					± 2		
u	-4							± 8
c	-4							± 24
t	-4					1		
D	-12			3				
d	-12	-12						
s	-12			3		27	18	
b	4	6				18	18	
Z	12	1				± 18		
H	4	6				27	18	
W	12		18					

[^0]a reduced value in the form of $\pm m(6 \pi)^{n} i^{s}\left(\tau^{3}\right)^{s^{\prime}} \epsilon_{0}$, where $\epsilon_{0}=2 \times(6 \pi)^{-48}, s \in\{0,1\}, s^{\prime} \in\{0,1\}$, and $m, n(0 \leq n \leq 4)$ are integers. The values of s, s^{\prime}, n, and m are determined by the selection of the subset $\left\{\hat{s}_{1}, \cdots, \hat{s}_{48}\right\}$ from $S_{P A}$. The reduced values of 48 wedge products of PAs that correspond to the actions of charged leptons (e, μ, τ), neutri$\operatorname{nos}\left(\nu_{1}, \nu_{2}, \nu_{3}\right)$, quarks (u, c, t, d, s, b), and bosons (Z, W, H) are summarized in Table 1. In the table, U and D stand for U-type and D-type quarks, respectively, when their mass is ignored.

The mass of particles can be obtained from this table. In the below, I shows how the mass formula of the electron can be obtained from the table as an example.

The action of the electron is

$$
d S_{e}=4(6 \pi)^{2} i \epsilon_{0} \tau^{3}+i \epsilon_{0} i \tau^{3}+3 \epsilon_{0}
$$

Each term of the action can then be written as a product of the following "operators":

$$
\begin{aligned}
i \hat{d}_{16} & =\epsilon_{0}^{1 / 3}\left(1+i \sigma^{1}+i \sigma^{2}+i \sigma^{3}\right) \\
\hat{\psi}_{15} & =\left|\psi_{15}\right| \tau^{2}\left(u_{1}^{2} \sigma^{1}+u_{2}^{2} \sigma^{2}+u_{3}^{2} \sigma^{3}\right) \\
\hat{\psi}_{15}^{\dagger} & =\left|\psi_{15}\right| \tau^{1}\left(u_{1}^{1} \sigma^{1}+u_{2}^{1} \sigma^{2}+u_{3}^{1} \sigma^{3}\right) \\
\hat{A}_{18} & =(6 \pi)^{-2} \epsilon_{0}^{1 / 3}\left(1+i \sigma^{1}+i \sigma^{2}+i \sigma^{3}\right)
\end{aligned}
$$

Here, $\left|\psi_{15}\right|=(6 \pi) \epsilon_{0}^{1 / 3}$ and the vectors $u^{1}=$ $\left(u_{1}^{1}, u_{2}^{1}, u_{3}^{1}\right)$ and $u^{2}=\left(u_{1}^{2}, u_{2}^{2}, u_{3}^{2}\right)$ satisfy $u^{1} \times u^{2}=$ $(-1,-1,-1)$ and $u^{1} \cdot u^{2}=1$. The operators $i d_{16}$ and ψ_{15} correspond to the differential operator $i \sigma^{\mu} \partial_{\mu}$ and the electron field operator, and ψ_{15}^{\dagger} corresponds to its conjugate. One can show that

$$
\begin{aligned}
i \hat{d}_{16} \hat{\psi}_{15}^{\dagger} \hat{\psi}_{15} & =4(6 \pi)^{2} \epsilon_{0} i \tau^{3} \\
\hat{A}_{18} \wedge \hat{\psi}_{15}^{\dagger} \hat{\psi}_{15} & =\epsilon_{0} i \tau^{3}, \\
\mu_{e}^{0}\left|\psi_{15}\right|^{2} & =3 \epsilon_{0}
\end{aligned}
$$

Here, $\mu_{e}^{0}=\left(12 \pi^{2}\right)^{-1} \epsilon_{0}^{1 / 3}$. The terms $4(6 \pi)^{2} \epsilon_{0} i \tau^{3}$, $\epsilon_{0} i \tau^{3}$, and $3 \epsilon_{0}$ correspond to the kinetic, the EM interaction, and the mass term, respectively. From these relations, the mass formula of the electron can be determined.

$$
\begin{aligned}
d S_{e} & =\left(1+\frac{1}{4} \frac{1}{(6 \pi)^{2}}\right)\left(i \hat{d}_{16} \hat{\psi}_{15}^{\dagger} \hat{\psi}_{15}+\mu_{e}\left|\psi_{15}\right|^{2}\right) \\
\mu_{e} & =\left(1+\frac{1}{4} \frac{1}{(6 \pi)^{2}}\right)^{-1} \frac{1}{12 \pi^{2}} \epsilon_{0}^{1 / 3}
\end{aligned}
$$

Similarly, the mass formulae of $\mu, \tau, \nu_{1}, \nu_{2}, \nu_{3}, u, d$, s, c, b, t, Z, W, and H can be obtained from each row in the Table 1.

Reference

1) Y. Akiba, RIKEN Accel. Prog. Rep. 52 (2018).

[^0]: *1 RIKEN Nishina Center

