A model of the empirical mass formulae of elementary particles

Y. Akiba $^{\ast 1}$

In the preceding article¹⁾ empirical formulae of the masses of charged leptons (e, μ, τ) , quarks (t, c, u, b, s, d), and gauge and Higgs bosons (Z, W,H) are presented. Here I report a model that can produce these mass formulae.

In the model, there is the minimum duration of time, which is the Planck time $\tau_{pl} = 1/M_{pl} = 5.3912 \times 10^{-44}$ sec. A term of the action (integral of Lagrangian) of a particle is a wedge product of 48 "primordial actions" (PAs) that are selected from the following 64 PAs:

$$S_{PA} = \left\{ \frac{1}{6\pi} I^{\mu} \sigma^{\nu} \tau^{a}, \frac{1}{6\pi} \varepsilon i, \frac{1}{6\pi} \varepsilon \tau^{3}, \frac{1}{6\pi} \varepsilon I^{c} \tau^{3}, -\frac{1}{2\pi} I^{c}, -\frac{1}{2\pi} \varepsilon i, i, I^{c}, -\varepsilon, \varepsilon, 1 \right\}.$$

The wedge product operator \wedge and orientation operator (sign operator) ε have the following reduction rules:

$$\begin{split} \hat{\alpha} \wedge \hat{\beta} &= \begin{cases} \hat{\alpha}\hat{\beta} & (\hat{\alpha}\hat{\beta} = -\hat{\beta}\hat{\alpha}) \\ 0 & (\hat{\alpha}\hat{\beta} = \hat{\beta}\hat{\alpha}), \end{cases} \\ \hat{\alpha} \wedge \hat{\beta} \wedge \hat{\gamma} &= \begin{cases} \hat{\alpha}\hat{\beta}\hat{\gamma} & (\hat{\alpha}\hat{\beta} = -\hat{\beta}\hat{\alpha}, \hat{\beta}\hat{\gamma} = -\hat{\gamma}\hat{\beta}, \hat{\gamma}\hat{\alpha} = -\hat{\alpha}\hat{\gamma}) \\ 0 & (otherwise), \end{cases} \\ s \wedge \hat{\alpha} &= s\hat{\alpha}, s_1 \wedge s_2 = 0, \hat{\alpha} \wedge s \wedge \hat{\beta} = s\hat{\alpha}\hat{\beta}, \\ (\varepsilon \wedge)^n &= 2^n. \end{split}$$

Here, s is scalar. Following these rules, a 48 wedge product of PAs, $dS = \hat{s}_{i_1} \wedge \cdots \wedge \hat{s}_{i_{48}}$, is reduced to

Table 1. The action of particles per Play	nck Time.
---	-----------

	$(6\pi)^2\epsilon_0$		(6π)	ϵ_0			ϵ_0	
	$i\tau^3$	$i\tau^3$	i	$ au^3$	1	$i\tau^3$	i	1
e	4					1		3
μ	4	-12				27		3
au	4	-3		3		1 + 4		
ν_1	-12	-12						-2
ν_2	4		-4					2
ν_3	-12	-12			± 2			
U	-12					± 2		
u	-4							± 8
c	-4							± 24
t	-4							± 8
D	-12					1		
d	-12	-12		3				
s	-12							3
b	4	6		3		27	18	
Z	12	1				1	18	
H	4	6					± 18	
W	12		18			27	18	

*1 RIKEN Nishina Center

a reduced value in the form of $\pm m(6\pi)^n i^s(\tau^3)^{s'} \epsilon_0$, where $\epsilon_0 = 2 \times (6\pi)^{-48}$, $s \in \{0, 1\}$, $s' \in \{0, 1\}$, and $m, n(0 \leq n \leq 4)$ are integers. The values of s, s', n, and m are determined by the selection of the subset $\{\hat{s}_1, \dots, \hat{s}_{48}\}$ from S_{PA} . The reduced values of 48 wedge products of PAs that correspond to the actions of charged leptons (e, μ, τ) , neutrinos (ν_1, ν_2, ν_3) , quarks (u, c, t, d, s, b), and bosons (Z, W, H) are summarized in Table 1. In the table, U and D stand for U-type and D-type quarks, respectively, when their mass is ignored.

The mass of particles can be obtained from this table. In the below, I shows how the mass formula of the electron can be obtained from the table as an example.

The action of the electron is

$$dS_e = 4(6\pi)^2 i\epsilon_0 \tau^3 + i\epsilon_0 i\tau^3 + 3\epsilon_0.$$

Each term of the action can then be written as a product of the following "operators":

$$\begin{split} &i\hat{d}_{16} \,=\, \epsilon_0^{1/3}(1+i\sigma^1+i\sigma^2+i\sigma^3),\\ &\hat{\psi}_{15} \,=\, |\psi_{15}|\tau^2(u_1^2\sigma^1+u_2^2\sigma^2+u_3^2\sigma^3),\\ &\hat{\psi}_{15}^\dagger \,=\, |\psi_{15}|\tau^1(u_1^1\sigma^1+u_2^1\sigma^2+u_3^1\sigma^3),\\ &\hat{A}_{18} \,=\, (6\pi)^{-2}\epsilon_0^{1/3}(1+i\sigma^1+i\sigma^2+i\sigma^3). \end{split}$$

Here, $|\psi_{15}| = (6\pi)\epsilon_0^{1/3}$ and the vectors $u^1 = (u_1^1, u_2^1, u_3^1)$ and $u^2 = (u_1^2, u_2^2, u_3^2)$ satisfy $u^1 \times u^2 = (-1, -1, -1)$ and $u^1 \cdot u^2 = 1$. The operators id_{16} and ψ_{15} correspond to the differential operator $i\sigma^{\mu}\partial_{\mu}$ and the electron field operator, and ψ_{15}^{\dagger} corresponds to its conjugate. One can show that

$$\begin{aligned} i\hat{d}_{16}\hat{\psi}_{15}^{\dagger}\hat{\psi}_{15} &= 4(6\pi)^2\epsilon_0 i\tau^3\\ \hat{A}_{18} \wedge \hat{\psi}_{15}^{\dagger}\hat{\psi}_{15} &= \epsilon_0 i\tau^3,\\ \mu_e^0|\psi_{15}|^2 &= 3\epsilon_0\,. \end{aligned}$$

Here, $\mu_e^0 = (12\pi^2)^{-1}\epsilon_0^{1/3}$. The terms $4(6\pi)^2\epsilon_0 i\tau^3$, $\epsilon_0 i\tau^3$, and $3\epsilon_0$ correspond to the kinetic, the EM interaction, and the mass term, respectively. From these relations, the mass formula of the electron can be determined.

$$dS_e = \left(1 + \frac{1}{4} \frac{1}{(6\pi)^2}\right) \left(i\hat{d}_{16}\hat{\psi}_{15}^{\dagger}\hat{\psi}_{15} + \mu_e |\psi_{15}|^2\right),$$
$$\mu_e = \left(1 + \frac{1}{4} \frac{1}{(6\pi)^2}\right)^{-1} \frac{1}{12\pi^2} \epsilon_0^{1/3}.$$

Similarly, the mass formulae of μ , τ , ν_1 , ν_2 , ν_3 , u, d, s, c, b, t, Z, W, and H can be obtained from each row in the Table 1.

Reference

1) Y. Akiba, RIKEN Accel. Prog. Rep. 52 (2018).