Cross-section measurement of neutron-rich isotopes produced from an RI beam of ¹³²Sn using a two-step scheme

H. Suzuki,^{*1} K. Yoshida,^{*1} N. Fukuda,^{*1} H. Takeda,^{*1} Y. Shimizu,^{*1} D. S. Ahn,^{*1} T. Sumikama,^{*1} N. Inabe,^{*1} T. Komatsubara,^{*1} H. Sato,^{*1} Z. Korkulu,^{*1} K. Kusaka,^{*1} Y. Yanagisawa,^{*1} M. Ohtake,^{*1} H. Ueno,^{*1} S. Michimasa,^{*2} N. Kitamura,^{*2} K. Kawata,^{*2} N. Imai,^{*2} O. B. Tarasov,^{*3,*1} D. P. Bazin,^{*3,*1} T. Kubo,^{*4,*1} J. Nolen,^{*5,*1} and W. F. Henning^{*5,*6,*1}

The production cross sections of neutron-rich radioactive isotopes (RI), including $^{125-128}$ Pd produced from a less-exotic RI beam of ¹³²Sn, were measured using BigRIPS and ZeroDegree at the RIKEN RI Beam Factory (RIBF) in November 2017.

A two-step reaction scheme was proposed¹⁾ for the efficient production of mid-heavy very-neutron-rich RIs. In this scheme, a long-lived neutron-rich RI such as ¹³²Sn, whose half-life is 40 s, is produced by an ISOL in the first step, and accelerated by post-accelerators. In the second step, more exotic nuclei, such as ^{125–128}Pd, are produced by a fragmentation reaction. With this scheme, one may obtain greater yields of very neutron-rich RIs than those obtained by direct production through the in-flight fission of a ²³⁸U beam, which is currently a very popular method to produce them. To evaluate the yields of RIs by the two-step scheme with a 132 Sn beam, we measured the production cross sections of neutron-rich Pd isotopes beyond ¹²⁵Pd, up to which the cross sections had already been measured at GSI together with the neighboring $RIs.^{2)}$

In the experiment, the ¹³²Sn beam was produced at BigRIPS by the in-flight fission of a 40-pnA 345-MeV/nucleon ²³⁸U⁸⁶⁺ beam impinging on a 4-The ¹³²Sn-beam energy was mm-thick Be target. 278 MeV/nucleon, the intensity was 35 kHz, and the purity was 50%. The neutron-rich Pd isotopes were produced by the fragmentation with a 6-mm-thick Be target at the entrance of ZeroDegree. The particle identification (PID) was performed by deducing the atomic number Z, the mass-to-charge ratio A/Q, and the mass number A of the RIs based on the TOF- $B\rho$ - ΔE -TKE method in ZeroDegree. Two settings—the ¹²⁶Pd setting and the ¹²⁸Pd setting—were applied for measuring the cross sections of ^{125, 126}Pd and ^{127, 128}Pd, respectively.

The Z vs A/Q PID plot of the ¹²⁸Pd setting is shown in Fig. 1. Many fully-stripped isotopes are observed with the partially-stripped ones. ^{127, 128}Pd⁴⁶⁺ are well identified in the plot. The events in the two blobs on the right side of 128 Pd⁴⁶⁺ are the H-like ions of $^{126, 127}$ Pd⁴⁵⁺. From the yields of RIs, their transmission in ZeroDegree, and the beam dose of ¹³²Sn, the production cross sections were deduced. In Fig. 2, the cross sections obtained

- *2 Center for Nuclear Study, University of Tokyo
- *3 National Superconducting Cyclotron Laboratory, Michigan State University
- *4 Facility for Rare Isotope Beams, Michigan State University
- *5 Division of Physics, Argonne National Laboratory
- *6Physik Department, Technische Universität München

in this experiment at RIBF and the ones at GSI^{2} are shown with the cross-section formulae $COFRA1.0^{3}$ and EPAX3.1a.⁴⁾ Both formulae reproduce the experimental cross sections fairly well. Further detailed analyses are in progress.

Fig. 1. The Z versus A/Q PID plot of ¹²⁸Pd setting in ZeroDegree. Partially-stripped contaminants are included in the plot with the fully-stripped ^{127, 128}Pd.

Fig. 2. The experimental cross sections of neutron-rich RIs produced from 132 Sn beams at RIBF and GSI²) with cross-section formulae COFRA1.0³⁾ and EPAX3.1a.⁴⁾

References

- 1) K. Helariutta et al., Eur. Phys. J. A 17, 181 (2003).
- 2) D. Pérez-Loureiro et al., Phys. Lett. B 703, 552 (2011).
- 3) COFRA web page, http://www.usc.es/genp/cofra.
- 4) K. Sümmerer, Phys. Rev. C, 86, 014601 (2012).

^{*1} **RIKEN** Nishina Center