Study of β -decay of ⁷¹Kr

A. Sveiczer,^{*1,*2,*3} A. Algora,^{*1,*2} A. I. Morales,^{*1} B. Rubio,^{*1} G. Kiss,^{*2} J. Agramunt,^{*1} V. Guadilla,^{*1}A. Montaner-Pizá,^{*1} S. E. A. Orrigo,^{*1} A. Horváth,^{*3} G. de Angelis,^{*4} D. Napoli,^{*4} F. Recchia,^{*5} S. Lenzi,^{*5}A. Boso,^{*5} S. Nishimura,^{*6} V. H. Phong,^{*6} J. Wu,^{*6} P. -A. Söderström,^{*6} T. Sumikama,^{*6} H. Suzuki,^{*6}

H. Takeda,^{*6} D. S. Ahn,^{*6} H. Baba,^{*6} P. Doornebal,^{*6} N. Fukuda,^{*6} N. Inabe,^{*6} T. Isobe,^{*6} T. Kubo,^{*6}

I. Takeda, * D. S. Ann, * H. Baba, * F. Doornebal, * N. Fukuda, * N. Habe, * T. Isobe, * T. Kubo, * S. Kubono,*⁶ H. Sakurai,*⁶ Y. Shimizu,*⁶ C. Sidong,*⁶ B. Blank,*⁷ P. Ascher,*⁷ M. Gerbaux,*⁷
T. Goigoux,*⁷J. Giovinazzo,*⁷ S. Grévy,*⁷ T. Kurtukián Nieto,*⁷ C. Magron,*⁷ W. Gelletly,*^{1,*8} Zs. Dombrádi,*⁷
Y. Fujita,*⁹ M. Tanaka,*⁹ P. Aguilera,*¹⁰ F. Molina,*¹⁰ J. Eberth,*¹¹ F. Diel,*¹¹ D. Lubos,*¹² C. Borcea,*¹³
E. Ganioglu,*¹⁴ D. Nishimura,*¹⁵ H. Oikawa,*¹⁵ Y. Takei,*¹⁵ S. Yagi,*¹⁵ W. Korten,*¹⁶ G. de France,*¹⁷
P. Davies,*¹⁸ J. Liu,*¹⁹ J. Lee,*¹⁹ T. Lokotko,*¹⁹ I. Kojouharov,*²⁰ N. Kurz,*²⁰ and H. Shaffner*²⁰

In this paper, we present the preliminary results of the analysis of the experiment NP1112-RIBF93, in particular, the ones related to our study of the β -decay of ⁷¹Kr. The main objective of the NP1112-RIBF93 experiment is to study p-n pairing and isospin-related features in the structure of 70,71 Kr through their β -decays.

⁷¹Kr nuclei were produced in the fragmentation of a 78 Kr primary beam with an energy of 345 MeV/nucleon. The high intensity beam provided by the accelerator complex of the RI Beam Factory (RIBF) enabled us to achive primary beam currents around 40 pnA. The primary beam impinged on a 5 mm thick Be target to produce a cocktail beam. After the separation and selection in the BigRIPS separator (see Fig. 1), the nuclei were implanted in the WAS3ABi active stopper, surrounded by the EURICA γ -ray spectrometer.¹⁾

Standard β - γ and β - γ - γ coincidence techniques were applied to study the β -decay of ⁷¹Kr. New γ transitions have been identified based on the comparisons between the half-lives obtained from implant- β - γ correlations and the half-life values determined from the corresponding correlations of previously identified γ -rays that belong to the 71 Kr decay (198, 207 and 397-keV transitions). In total, 4 new γ transitions have been identified. After the identification of all γ -rays that belong to this decay, $\gamma\text{-}\gamma$ coincidences were also studied. A new half-life value was determined using the implant- β - γ time correlations with coincidence conditions on the strongest identified γ -rays of the decay. Several factors

- *2MTA ATOMKI
- *3 ELTE-Budapest
- *4 **INFN-Legnaro**
- *5 INFN-Padova
- *6 **RIKEN** Nishina Center
- *7CEN Bordeaux-Gradignan
- *8 Department of Physics, Surrey University
- *9 Osaka University
- *10 CCHEN
- $^{\ast 11}$ Institute of Nucl. Physics, Universität zu Köln
- $^{\ast 12}$ Physik Department, Technische Universität München
- *13 IFIN-HH, Bucarest
- *14 Department of Physics, University of Istanbul
- *15 Tokyo Univ. Sci.
- *¹⁶ IRFU, CEA, Université Paris-Saclay
- $^{\ast 17}$ GANIL-Caen
- *18 Department of Physics, York University
- *¹⁹ Department of Physics, University of Hong Kong
- *20 GSI

Fig. 1. Identification plot for the isotopes produced in 78 Kr fragmentation for the ⁷¹Kr setting.

Fig. 2. Half-life of ⁷¹Kr determined in this work.

that can influence the quality of the fit and the final value were taken into account as in our previous ⁷⁰Br study.²⁾ Figure 2 shows the half-life of the ⁷¹Kr decay obtained with this method. The half-life obtained of $T_{1/2}$ = 96.55(79) ms for this decay was significantly consistent with the previous measurements and it is the most precise value reported until now in the literature. Presently, a new decay scheme is being constructed. The analyses of the 70,71 Kr β and the possible 71 Kr isomer decays are still in progress.

References

- 1) S. Nishimura, Prog. Theor. Exp. Phys. 03C006 (2012).
- 2) A. I. Morales et al., Phys. Rev. C 95, 064327 (2017).

^{*1} IFIC, CSIC-Univ. Valencia