P. Aguilera,^{*1,*2} B. Rubio,^{*2} F. Molina,^{*1} J. Agramunt,^{*2} A. Algora,^{*2} V. Guadilla,^{*2} A. Montaner-Piza,^{*2} A. I. Morales,^{*2} S. E. A. Orrigo,^{*2} B. Blank,^{*3} P. Ascher,^{*3} M. Gerbaux,^{*3} T. Goigoux,^{*3} J. Giovinazzo,^{*3}
S. Grévy,^{*3} T. Kurtukian Nieto,^{*3} C. Magron,^{*3} D. Nishimura,^{*4} J. Chiba,^{*4} H. Oikawa,^{*4} Y. Takei,^{*4} S. Yagi,^{*4} D. S. Ahn,^{*5} P. Doornenbal,^{*5} N. Fukuda,^{*5} N. Inabe,^{*5} G. Kiss,^{*5} T. Kubo,^{*5} S. Kubono,^{*5} S. Nishimura,^{*5}
Y. Shimizu,^{*5} C. Sidong,^{*5} P. A. Söderström,^{*5} T. Sumikama,^{*5} H. Suzuki,^{*5} H. Takeda,^{*5} V. H. Phong,^{*5} J. Wu,^{*5}
H. Sakurai,^{*4,*5} Y. Fujita,^{*6} M. Tanaka,^{*6} W. Gelletly,^{*2,*7} F. Diel,^{*8} D. Lubos,^{*9} G. de Angelis,^{*10} D. Napoli,^{*10}

C. Borcea,^{*11} A. Boso,^{*12} R. B. Cakirli,^{*13} E. Ganioglu,^{*13} G. de France,^{*14} S. Go,^{*15} and K. Wimmer^{*16}

In this paper, the preliminary results of the analysis of the NP1112-RIBF82 experimental campaign are presented. The main goal of this study is the $T_z = -1$ ⁶⁶Se β -decay.

 $^{66}\mathrm{Se}$ was produced using a primary beam of $^{78}\mathrm{Kr}$ with 345 MeV/nucleon and a target of Be. The nuclei of interest were separated and identified at the BigRIPs mass separator by the ΔE -ToF- $B\rho$ method (see Fig. 1 inset). The nuclei of interest were implanted in three Double-Sided Silicon Strip Detectors (DSSSDs) named WAS3ABi, surrounded by the EUROBALL-RIKEN Cluster Array¹⁾ (EURICA).

The β and γ spectra were obtained by the correlations between implants and decays within a ± 400 ms time

window. Backward correlation times were used to subtract random correlations. In Fig. 1, the β spectrum with background subtraction is shown. A similar procedure was applied to obtain the γ -spectrum, considering that EURICA was triggered by WAS3ABi. In Fig. 2 the γ -spectrum is shown.

We present here the first experimental results on the β -delayed gamma decay of ⁶⁶Se. Two gamma lines were previously observed in the isomeric $decay^{2}$ and inbeam study³⁾ of 66 As. They correspond to the gammadeexcitation of two levels with $J^{\pi} = 1^+$ and 2^+ at 836 keV and 964 keV energy respectively. Through our analysis, we could identify three additional levels by implant- γ and implant- γ - γ correlation analysis (see Fig. 3).

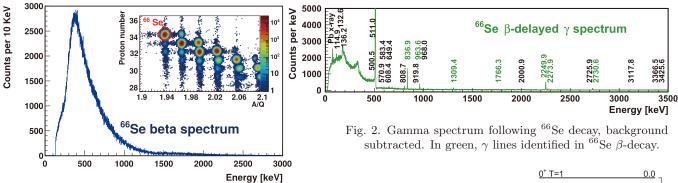


Fig. 1. Beta spectrum from 66 Se decay with background subtracted and PID selection of ⁶⁶Se implants identified by the BigRIPs mass separator.

- *1Chilean Nuclear Energy Commision
- *2 IFIC, CSIC-Universidad de Valencia
- *3 Centre d'Etudes Nucléaires de Bordeaux-Gradignan
- *4 Department of Physics, Tokyo City University
- *5 **RIKEN** Nishina Center
- *6 Department of Physics, Osaka University
- *7 Department of Physics, Surrey University
- *8 Institute of Nuclear Physics, Universität zu Köln
- *9 Physics Department E-12, Technische Universität München *10 Istituto Nazionale di Fisica Nucleare, Laboratorio Nazionale
- di Legnaro *11
- National Institute for Physics and Nuclear Engineering, IFIN-HH
- $^{\ast 12}$ Istituto Nazionale di Fisica Nucleare, Sezione di Padova
- *13 Department of Physics, Istanbul University
- *¹⁴ Grand Accélérateur National d'Ions Lourds
- *15 Department of Physics, Tennessee University
- *¹⁶ Atomki, Debrecen

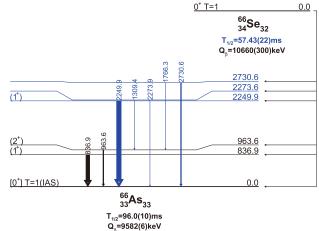


Fig. 3. (Color online) Preliminary level scheme for ⁶⁶Se decay. Levels previously known in the literature are shown in black, blue lines correspond to this work.

References

- 1) B. Rubio et al., RIKEN Accel. Prog. Rep. 49, 27 (2015).
- 2) R. Grzywacz et al., Phys. Lett. B 429, 247 (1998).
- 3) R. Grzywacz et al., Nucl. Phys. A 682, 41c (2001).