Beta-gamma spectroscopy of neutron-rich ¹⁵⁰Ba[†]

R. Yokoyama,^{*1} E. Ideguchi,^{*2} G. Simpson,^{*3} Mn. Tanaka,^{*2} S. Nishimura,^{*4} P. Doornenbal,^{*4} P. -A. Söderström,^{*4} G. Lorusso,^{*4} Z. Y. Xu,^{*5} J. Wu,^{*4,*6} T. Sumikama,^{*7} N. Aoi,^{*2} H. Baba,^{*4} F. Bello,^{*8} F. Browne,^{*9,*4} R. Daido,^{*10} Y. Fang,^{*10} N. Fukuda,^{*4} G. Gey,^{*3,*4,*11} S. Go,^{*1,*4} N. Inabe,^{*4} T. Isobe,^{*4} D. Kameda,^{*4} K. Kobayashi,^{*12} M. Kobayashi,^{*1} T. Komatsubara,^{*13} T. Kubo,^{*4} I. Kuti,^{*14} Z. Li,^{*6}

M. Matsushita, ^{*1} N. Robayashi, ^{*1} R. Robayashi, ^{*1}

Intruder orbitals due to the strong $l \cdot s$ coupling in atomic nuclei can cause higher-order interactions, for example, octupole-deformed shapes energetically favored in certain nuclei. Octupole correlations ($\lambda = 3$) are caused by the interactions between orbits with $\Delta i =$ $\Delta l = 3$. Nuclei with Z or N = 34, 56, 88, and 134 possess such orbits at or close to the Fermi surface and are expected to have strong octupole correlations. Recently, static octupole deformation was reported in the $Z \sim 88, N \sim 134$ (Ra) region by Gaffney et al.²⁾ and at $Z \sim 56$, $N \sim 88$ (Ba) by Bucher *et al.*³⁾ However, the result that ¹⁴⁸Ba may have strong octupole correlation as 144 Ba does⁴⁾ raised a question whether 150 Ba also possess strong octupole correlation.

Neutron-rich Ba (Z = 56) isotopes were produced at RIBF and measured by means of β - γ spectroscopy at the F11 focal plane of the ZeroDegree spectrometer. An active stopper, WAS3ABi,⁵⁾ and HPGe array, EURICA,⁶⁾ were used for β -ion correlation and γ -ray detection, respectively. The γ -ray spectrum of the ¹⁵⁰Cs decay within 0.2 s after implantation is shown in Fig. 1. The estimated continuum background is overlaid. Two peaks at 100 and 597 keV were assigned as transitions in ^{150}Ba after a log-likelihood ratio test requiring 4σ significance. From the systematics of ^{144–148}Ba, the 100-keV and 597keV γ rays were assigned as $2^+_1 \rightarrow 0^+$ and $3^- \rightarrow 2^+_1$ decay, which are also consistent with their intensities.

- t Condensed from the article in Prog. Theor. Exp. Phys. 2018, 041D02
- *1 Center for Nuclear Study, The University of Tokyo
- *2Research Center for Nuclear Physics, Osaka University
- *3 LPSC, Université Grenoble-Alpes, $\rm CNRS/IN2P3$
- *4**RIKEN** Nishina Center
- *5 Department of Physics, The University of Tokyo
- *6 Department of Physics, Peking University
- *7Department of Physics, Tohoku University
- *8 Department of Physics, University of Oslo
- *9 School of Computing Engineering and Mathematics, University of Brighton
- ^{*10} Department of Physics, Osaka University
- *11 ILL, Grenoble
- $^{\ast 12}$ Department of Physics, Rikkyo University
- $^{\ast 13}$ Department of Physics, University of Tsukuba
- *14 MTA Atomki, Hungarian Academy of Science, Hungary
- $^{\ast 15}$ Department of Display Engineering, Hoseo University
- *¹⁶ Department of Physics, University of Surrey
- $^{\ast 17}$ Department of Physics, University of York
- $^{\ast 18}$ Instituto de Estructura de la Materia, CSIC
- $^{\ast 19}$ Departamento de Física Teórica, Universidad Autónoma de Madrid
- *²⁰ Department of Physiscs, Beihang University
- *²¹ Department of Physiscs, Niigata University

100 ¹⁵⁰Cs to ¹⁵⁰Ba < 0.2 s 5 — β-v spectrum 4 estimated b.g. counts per keV 597 3 00 600 energy (keV) 200 400 800 1000

Fig. 1. A $\gamma\text{-ray}$ spectrum from the β decay of $^{150}\mathrm{Cs.}$

A calculation with the Hartree-Fock method and the random-phase approximation (RPA) was newly performed.^{7,8)} The calculation predicted that ¹⁵⁰Ba has a large ground-state octupole deformation, $\beta_{30} = 0.15$, as those of the even-even A = 144 to 148 isotopes. The RPA calculation predicted a J = 3 excitation of ¹⁵⁰Ba at 0.76 MeV, which may be the observed 697 keV state. The calculated state has B(E3) = 35 W.u., indicating that the state is an octupole collective state rather than a single particle one.

In summary, the newly measured $E(2_1^+)$ and possibly $E(3^{-})$ of ¹⁵⁰Ba indicate that the quadrupole deformation of ¹⁵⁰Ba is larger than that of ¹⁴⁸Ba, and there may exist a negative-parity J = 3 band with a large octupole collectivity. A newly performed HF-plus-RPA calculation predicted a static octupole deformation in the A = 140 to 150 Ba isotopes and excited states with octupole collectivity at around 1 MeV. The results show that ¹⁵⁰Ba has a large octupole collectivity and that the region of octupole correlations around Z = 56, N = 88may be wider than expected. 9,10

References

- 1) I. Ahmad et al., Ann. Rev. Nucl. Pt. Sci. 43 71 (1993).
- 2) L. P. Gaffney et al., Nature 497, 199 (2013).
- 3) B. Bucher et al., Phys. Rev. Lett. 116, 112503 (2016).
- 4) W. Urban *et al.*, Nucl. Phys. A **613**, 107 (1997).
- 5) S. Nishimura et al., Prog. Theor. Exp. Phys. 2012, 03C006 (2012).
- 6) P.-A. Söderström et al., Nucl. Instrum. Methods Phys. Res. B 317, 649 (2013).
- 7) T. Nakatsukasa et al., Phys. Rev. C 76, 024318 (2007).
- 8) T. Inakura et al., Phys. Rev. C 80 044301 (2009).
- 9) P. Möller et al., At. Data Nucl. Data Tables 109, 1 (2016).
- 10) S. E. Agbemava et al., Phys. Rev. C 93, 044304 (2016).

