Study of spin-isospin response of ¹¹Li (SAMURAI30 experiment)

L. Stuhl,^{*1} M. Sasano,^{*2} J. Gao,^{*2,*3} Y. Hirai,^{*4} K. Yako,^{*1} T. Wakasa,^{*4} D. S. Ahn,^{*2} H. Baba,^{*2} A. Chilug,^{*5,*2} S. Franchoo,^{*6} Y. Fujino,^{*7} J. Gibelin,^{*8} I. S. Hahn,^{*9} Z. Halász,^{*10} T. Harada,^{*11} M. N. Harakeh,^{*12,*13}
D. Inomoto,^{*4} T. Isobe,^{*2} H. Kasahara,^{*4} D. Kim,^{*14} G. G. Kiss,^{*10} T. Kobayashi,^{*15} Y. Kondo,^{*16} Z. Korkulu,^{*2} S. Koyama,^{*17} Y. Kubota,^{*2} A. Kurihara,^{*16} H. N. Liu,^{*18} M. Matsumoto,^{*16} S. Michimasa,^{*1} H. Miki,^{*16} M. Miwa,^{*19} T. Motobayashi,^{*2} T. Nakamura,^{*16} M. Nishimura,^{*2} H. Otsu,^{*2} V. Panin,^{*2} S. Park,^{*9}

A. T. Saito,^{*16} H. Sakai,^{*2} H. Sato,^{*2} T. Shimada,^{*16} Y. Shimizu,^{*2} S. Shimoura,^{*1} A. Spiridon,^{*5} I. Stefanescu,^{*5} X. Sun,^{*2,*3} Y. L. Sun,^{*18} H. Suzuki,^{*2} Y. Togano,^{*7} T. Tomai,^{*16,*2} L. Trache,^{*5} D. Tudor,^{*5,*2} T. Uesaka,^{*2} H. Yamada,^{*16} M. Yasuda,^{*16} K. Yoneda,^{*2} K. Yoshida,^{*2} J. Zenihiro,^{*2} and N. Zhang^{*20,*1}

The spin-isospin responses of ¹¹Li and ¹⁴Be neutron drip line nuclei were measured in charge-exchange (p, n)reactions. Until recently, only the spin-isospin collectivity in stable isotopes was investigated.¹⁾ There is no available data for nuclei with large isospin asymmetry factors, where (N-Z)/A > 0.25. The (p, n) reactions at intermediate beam energies (E/A > 100 MeV) and small scattering angles can excite Gamow-Teller (GT) states up to high excitation energies in the final nucleus, without Q-value limitation. The combined setup of PAN-DORA²⁾ and SAMURAI spectrometer³⁾ with a thick liquid hydrogen target $(LHT)^{4}$ allowed us to perform the experiment with high luminosity. In this setup,⁵⁾ PAN-DORA was used for the detection of the recoil neutrons while SAMURAI was used to tag the decay channel of the reaction residues.

The secondary cocktail beam of ¹¹Li and ¹⁴Be was transported onto the 10 mm-thick LHT.⁶) The neutron detector setup on the left and right sides of LHT consisted of 27 PANDORA and 13 WINDS $^{7)}$ plastic scintillator bars. The neutron kinetic energies were deduced by the time-of-flight (ToF) technique (1.25 m flight path). The ToF time reference was taken from SBT1,2 plastic scintillators. The left and right wings with respect to the beam line covered the laboratory recoil angular region of $47^{\circ}-113^{\circ}$ and $62^{\circ}-134^{\circ}$, respectively, with 3.25° steps. PANDORA was optimized to detect neutrons with a kinetic energy of 0.1–5 MeV. The light output threshold was set to be 60 keV_{ee}. The digital data-acquisition (DAQ) of PANDORA was combined⁸) with standard

- *1Center for Nuclear Study, University of Tokyo
- *2 **RIKEN** Nishina Center
- *3 School of Physics, Peking University
- *4Department of Physics, Kyushu University
- *5Horia Hulubei Nat. Inst. of Phys. and Nucl. Eng.
- *6 Inst. de Physique Nuclaire, Univ. Paris-Saclay
- *7Department of Physics, Rikkyo University
- *8 LPC CAEN
- *9 Department of Physics, Ewha Womans University
- *10 ATOMKI, Institute for Nuclear Research, HAS
- *11 Department of Physics, Toho University
- *12KVI - CART, University of Groningen
- $^{\ast 13}$ GSI Helmholtzzentrum für Schwerionenforschung
- $^{\ast 14}$ Department of Physics, Korea University
- $^{\ast 15}$ Department of Physics, Tohoku University
- $^{\ast 16}$ Dept. of Physics, Tokyo Institute of Technology
- *¹⁷ Department of Physics, University of Tokyo
- *¹⁸ Dépt. Physique Nucl., CEA, Univ. Paris-Saclay
- ^{*19} Dept. of Physics, Saitama University
- *²⁰ Institute of Modern Physics, Chinese Acad. of Sci.

Fig. 1. Recoil neutron energy spectrum as a function of scattering angle in the laboratory frame.

DAQ of SAMURAI.

The reaction residues were momentum analyzed by the SAMURAI spectrometer, using HODF24 and HODP detectors.⁹⁾ Figure 1 shows a preliminary plot of kinetic energy as a function of laboratory scattering angle for recoil neutrons associated with ¹¹Li beam. We required the simultaneous detection of ⁹Li and d in HODF24 and neutron detection¹⁰ in PANDORA.

A clear kinematical correlation between the measured kinetic energy and the laboratory scattering angle, above 18 MeV excitation energy (E_x) , was obtained. This forward scattering peak $(2^{\circ}-7^{\circ})$ in the center-of-mass system) suggests a GT transition. The ⁹Li + d decay channel of ¹¹Be is observed for the first time. Reconstruction of the excitation-energy spectrum up to about 30 MeV, including the GT giant resonance region, is ongoing.

References

- 1) K. Nakayama et al., Phys. Lett. B 114, 217(1982).
- 2) L. Stuhl et al., Nucl. Instrum. Methods Phys. Res. A 866, 164(2017).
- 3) T. Kobayashi et al., Nucl. Instrum. Methods Phys. Res. B **317**, 294 (2013).
- 4)X. Sun *et al.*, in this report.
- 5) M. Sasano et al., in this report.
- 6) M. Miwa *et al.*, in this report.
- 7) K. Yako et al., RIKEN Accel. Prog. Rep. 45, 137 (2012).
- 8) J. Gao *et al.*, in this report.
- 9) Y. Hirai *et al.*, in this report.
- 10) Y. Hirai et al., in this report.