Y. Hirai,^{*1} L. Stuhl,^{*2} M. Sasano,^{*3} J. Gao,^{*3,*4} K. Yako,^{*2} T. Wakasa,^{*1} D. S. Ahn,^{*3} H. Baba,^{*3} A. Chilug,^{*5,*3} S. Franchoo,^{*6} Y. Fujino,^{*7} J. Gibelin,^{*6} I. S. Hahn,^{*8} Z. Halász,^{*9} T. Harada,^{*10} M. N. Harakeh,^{*11,*12} D. Inomoto,^{*1} T. Isobe,^{*3} H. Kasahara,^{*1} D. Kim,^{*13} G. G. Kiss,^{*9} T. Kobayashi,^{*14} Y. Kondo,^{*15} Z. Korkulu,^{*3} S. Koyama,^{*16} Y. Kubota,^{*3} A. Kurihara,^{*15} H. N. Liu,^{*17} M. Matsumoto,^{*15} S. Michimasa,^{*2} H. Miki,^{*15} M. Miwa,^{*18} T. Motobayashi,^{*3} T. Nakamura,^{*15} M. Nishimura,^{*3} H. Otsu,^{*3} V. Panin,^{*3} S. Park,^{*8}
A. T. Saito,^{*15} H. Sakai,^{*3} H. Sato,^{*3} T. Shimada,^{*15} Y. Shimizu,^{*3} S. Shimoura,^{*2} A. Spiridon,^{*5} I. Stefanescu,^{*5} X. Sun,^{*3,*4} Y. L. Sun,^{*17} H. Suzuki,^{*3} Y. Togano,^{*7} T. Tomai,^{*15,*3} L. Trache,^{*5} D. Tudor,^{*5,*3} T. Uesaka,^{*3} H. Yamada,^{*15} M. Yasuda,^{*15} K. Yoneda,^{*3} K. Yoshida,^{*3} J. Zenihiro,^{*3} and N. Zhang^{*19,*2}

The neutron-gamma discrimination ability of PAN-DORA (Particle Analyzer Neutron Detector Of Realtime Acquisition $)^{1)}$ was studied for SAMURAI $30^{2,3)}$ experiment using $^{(1)}Li(p,n)$ reactions.⁴⁾ The method of separating neutron and gamma events is based on charge integration, where the PSD (Pulse-Shape Discrimination) parameter is $(Q_{\text{Long}} - Q_{\text{Short}})/Q_{\text{Long}}$, where Q_{Long} and Q_{Short} are derived from the charge integrated in the long gate and short gate of each end of a PANDORA bar, respectively. PSD_{mean} can be defined as the arithmetic average of PSD because PANDORA is a doubleended read-out. Figure 1 presents a two-dimensional plot of PSD_{mean} vs. $Q_{Long}(light output)$ of a PANDORA bar. The locus in the higher PSD region corresponds to

Fig. 1. PSD_{mean} as a function of light output (bar ID = 7).

*1 Department of Physics, Kyushu University

- *2 Center for Nuclear Study, University of Tokyo
- *3 **RIKEN** Nishina Center
- *4School of Physics, Peking University
- *5 Horia Hulubei Nat. Inst. of Phys. and Nucl. Eng.
- *6 LPC CAEN
- *7Department of Physics, Rikkyo University
- *8 Department of Physics, Ewha Womans University
- *9 ATOMKI, Institute for Nuclear Research, HAS
- *¹⁰ Department of Physics, Toho University
- *11 KVI - CART, University of Groningen
- $^{\ast 12}$ GSI Helmholtzzentrum für Schwerionenforschung
- $^{\ast 13}$ Department of Physics, Korea University
- *¹⁴ Department of Physics, Tohoku University
- *¹⁵ Dept. of Physics, Tokyo Institute of Technology
- *¹⁶ Department of Physics, University of Tokyo
- ^{*17} Dépt. Physique Nucl., CEA, Univ. Paris-Saclay
- ^{*18} Dept. of Physics, Saitama University
- *¹⁹ Institute of Modern Physics, Chinese Acad. of Sci.

Fig. 2. PSD_{mean} distributions for the light output (a) from 200 to 400 and (b) from 1400 to 1600 [keVee]. The blue and red lines shows gamma and neutron events, respectively.

the neutron-like events, while the distribution in the low PSD range represents the gamma-like events.

To evaluate the discrimination performance of PAN-DORA, Figure-of-Merit (FoM) is used. FoM is defined as:

$$FoM = \frac{\Delta_{\gamma-n}}{L_{\gamma-FWHM} + L_{n-FWHM}},$$
(1)

where $\Delta_{\gamma-n}$ is the PSD difference between the neutron and gamma component peaks. $L_{\gamma-\text{FWHM}}$ and $L_{n-\text{FWHM}}$ are the full widths at half maxima of the gamma and neutron distributions, respectively. In this work, we used the window method, detailed in Ref. 1). Figure 2 shows the one-dimensional PSD_{mean} projections in 200 keV_{ee} wide window centered at light outputs of 300 keV_{ee} (a) and 1500 keV_{ee} (b), respectively. The calculated FoM values are 1.17 ± 0.01 (a) and 0.98 ± 0.03 (b). We achieved better FoM value than previous studies. $^{5-7)}$ Owing to the optimized digital read-out, large gain setting, and improved scintillation material, we achieved better FoM value than previous studies. References

- 1) L. Stuhl, et al., Nucl. Instrum. Methods Phys. Res. A 866, 164 (2017).
- 2) M. Sasano et al., in this report.
- 3) L. Stuhl *et al.*, in this report.
- 4) Y. Hirai *et al.*, in this report.
- 5) S. A. Pozzi, et al., Nucl. Instrum. Methods Phys. Res. A **723**, 19 (2013).
- 6) D. Cester, et al., Nucl. Instrum. Methods Phys. Res. A 735, 202 (2014).
- 7) P. Blanc, et al., Nucl. Instrum. Methods Phys. Res. A 750, 1 (2014).