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II-2. Atomic & Solid State Physics (Muon)

Negative muon spin rotation with low-density gas target under
transverse magnetic field to solve the proton radius puzzle

S. Kanda,*! K. Ishida,*? M. Iwasaki,*"'*? Y. Ma,*!*2 S. Okada,*! and M. Sato*?

When a negative muon is captured by a nuclear
Coulomb potential, an electron around the nuclei is
kicked out and the muon forms an exotic bound state
called muonic atom. Muonic atom provides a unique
opportunity to study the nuclear structure such as the
charge radius of the nuclei. In particular, the proton
charge radius attracts renewed interest since the mea-
surement of the Lamb shift in muonic hydrogen.)) The
experiment derived a significantly discrepant result com-
pared to the results of electron-proton scattering and
hydrogen spectroscopy. This discrepancy has been an
important unsolved problem in sub-atomic physics.

To obtain a new insight into the puzzle, a new mea-
surement of the ground-state hyperfine splitting (HFS)
in muonic hydrogen is planned. The experiment aims
to determine the proton Zemach radius, which is de-
fined as a convolution of the electric charge and magnetic
moment distributions. As a preliminary experiment to-
ward the spectroscopy of HFS, a muon spin rotation
(uSR) measurement with a gaseous hydrogen target was
proposed.?) The objective of the experiment was to un-
derstand the spin depolarization process involving the
muonic hydrogen atom.

In a magnetic field, muon spin rotates with the Lar-
mor frequency, which depends on the hyperfine state of
muonic atom. Therefore, we can quantify the popula-
tion of the hyperfine states and the depolarization effect
by measuring the angular asymmetry of decay electrons.

Figure 1 illustrates the experimental setup at Port4
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Fig. 1. Experimental setup: (a) cross-sectional view; (b)
view from downstream. The numbers in the parentheses
denote: (1) negative pulsed muon beam, (2) Helmholtz
coils, (3) aluminium gas chamber, (4) top electron detec-
tors, and (5) bottom electron detectors.
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Fig. 2. Decay electron time spectrum with deuterium gas
target at 1 atm. No magnetic field was applied. Each
line corresponds to the respective fitting result.

in RIKEN-RAL muon facility. A transverse magnetic
field was applied using the coils, which are parts of
the CHRONUS spectrometer. Decay electrons from the
muonic atoms were detected by the segmented scintilla-
tion counters with silicon photomultiplier (SiPM) read-
out. The detectors were originally developed for the
muonium production experiment at Port3.>) A study
conducted in 2016% revealed that a countermeasure for
the background arising from the duct-streaming neu-
trons is essential for sufficient signal-to-noise ratio. Ac-
cordingly, the detectors were placed away from the beam
axis. The inner walls of the target chamber were covered
with silver plates to reduce the lifetime of wall-stopped
muons via nuclear capture.

The experiment was conducted in 2018 with a gaseous
deuterium target to establish the measurement pro-
cedure. Deuterium was selected owing to its longer-
lifetime of polarization instead of protium. Figure 2
shows a measured time spectrum of electrons from the
muon decays. The spectrum was analyzed using a fit-
ting function containing three exponential components
and a constant background. Each exponential compo-
nent corresponded to the muon lifetime in silver (87 ns),
aluminium (864 ns), and deuterium (2195 ns). The
beam momentum was optimized at several target densi-
ties considering the muonic hydrogen yield. The analysis
for the SR measurement under the transverse magnetic
field is in progress.
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