First Spectroscopic study of ⁵⁶Ca

S. Chen,^{*1,*2,*3} F. Browne,^{*3} J. Lee,^{*2} P. Doornenbal,^{*3} A. Obertelli,^{*4,*3,*5} H. Baba,^{*3} D. Calvet,^{*4} F. Château,^{*4} N. Chiga,^{*3} A. Corsi,^{*4} M. L. Cortés,^{*3} A. Delbart,^{*4} J-M. Gheller,^{*4} A. Giganon,^{*4} A. Gillibert,^{*4} C. Hilaire,^{*4} T. Isobe,^{*3} T. Kobayashi,^{*6} Y. Kubota,^{*3,*7} V. Lapoux,^{*4} H. N. Liu,^{*4,*13} T. Motobayashi,^{*3} I. Murray,^{*3,*8} H. Otsu,^{*3} V. Panin,^{*3} N. Paul,^{*4} W. Rodriguez,^{*9} H. Sakurai,^{*3,*10} M. Sasano,^{*3} D. Steppenbeck,^{*3} L. Stuhl,^{*7} Y. L. Sun,^{*4} Y. Togano,^{*11} T. Uesaka,^{*3} K. Wimmer,^{*10} K. Yoneda,^{*3} N. Achouri,^{*12} O. Aktas,^{*13} T. Aumann,^{*5} L. X. Chung,^{*14} F. Flavigny,^{*8} S. Franchoo,^{*8} I. Gasparic,^{*15} R.-B. Gerst,^{*16} J. Gibelin,^{*12} K. I. Hahn,^{*17} D. Kim,^{*17} T. Koiwai,^{*10} Y. Kondo,^{*18} P. Koseoglou,^{*5,*15} C. Lehr,^{*5} B. D. Linh,^{*14} T. Lokotko,^{*2} M. MacCormick,^{*8} K. Moschner,^{*16} T. Nakamura,^{*18} S. Y. Park,^{*17} D. Rossi,^{*15} E. Sahin,^{*19} D. Sohler,^{*20} P-A. Söderström,^{*5} S. Takeuchi,^{*18} H. Toernqvist,^{*15} V. Vaquero,^{*21} V. Wagner,^{*5} S. Wang,^{*22} V. Werner,^{*5} X. Xu,^{*2} H. Yamada,^{*18} D. Yan,^{*22}

Z. Yang,^{*3} M. Yasuda,^{*18} and L. Zanetti^{*5}

The first measurement of low-lying excited states of 56 Ca was performed as part of the third SEASTAR¹) (Shell Evolution And Search for Two-plus energies At the RIBF) campaign in May 2017. In a simple shell-model description, this nucleus has two neutrons in the $f_{5/2}$ orbital outside the closed (sub)-shell nucleus 54 Ca.²) The location of its 2^+_1 energy gives a measurement of the difference between 0^+ and 2^+ two-body matrix elements in $\nu(f_{5/2})^2$, which is of importance to understand the nature of the very neutron-rich, potential closed (sub)-shell nucleus 60 Ca. Theoretical predictions of this energy level vary from 0.5 to 2 MeV; therefore, its experimental determination is desirable.

A ⁷⁰Zn beam accelerated to 345 MeV/nucleon impinged on a 10-mm thick ⁹Be primary target with an average intensity of ~160 pnA at the entrance of the BigRIPS separator to produce the radioactive secondary beam. BigRIPS was tuned to select and identify particles of interest via the measurement of $B\rho$, ΔE and ToF by using standard beamline detectors. The particle identification of BigRIPS is shown in Fig. 1. The average production rate of ⁵⁷Sc nuclei was 13.6 s⁻¹. To induce knock-out reactions populating low-lying states in ⁵⁶Ca, the secondary beam impinged

- *³ RIKEN Nishina Center
- ^{*4} IRFU, CEA, Université Paris-Saclay
- $^{*5}\,$ Institut für Kernphysik, Technische Universität Darmstadt
- *6 Department of Physics, Tohoku University
- *7 Center for Nuclear Study, the University of Tokyo
- *8 IPN Orsay, CNRS, Univ. Paris Sud, Univ. Paris Saclay
- *9 Universidad Nacional de Colombia
- $^{\ast 10}$ Department of Physics, University of Tokyo
- *¹¹ Department of Physics, Rikkyo University
- $^{\ast 12}$ LPC Caen, ENSICAEN, Université de Caen
- $^{\ast 13}$ Department of Physics, Royal Institute of Technology
- $^{\ast 14}$ Institute for Nuclear Science & Technology, VINATOM
- *15 GSI Helmholtzzentrum Darmstadt
- *¹⁶ Institut für Kernphysik, Universität zu Köln
- *¹⁷ Ewha Womans University
- *18 Department of Physics, Tokyo Institute of Technology
- *¹⁹ Department of Physics, University of Oslo
- *²⁰ MTA Atomki
- $^{\ast 21}$ Instituto de Estructura de la Materia, CSIC
- $^{\ast 22}$ Institute of Modern Physics, Chinese Academy of Sciences

Fig. 1. BigRIPS particle identification (left) and SAMU-RAI particle identification for ⁵⁷Sc secondary beam (right). The ⁵⁷Sc(p, 2p)⁵⁶Ca channel is selected.

on the 150-mm-length LH2 target of the MINOS device.³⁾ The beam energy in front of the secondary target was measured to be $\sim 250 \text{ MeV/nucleon}$. The upgraded DALI2⁴⁾ array, which contains 226 NaI(Tl) detectors, was used to measure gamma rays emitted from the in-flight particles. The reaction residues were identified using the SAMURAI spectrometer.⁵⁾ The identification of the residues from the ⁵⁷Sc secondary beam is also shown in Fig. 1, from which the ⁵⁶Ca isotopes are selected.

Currently, the gamma-ray spectrum in coincidence with the ${}^{57}\text{Sc}(p,2p){}^{56}\text{Ca}$ reaction channel is under analysis. This preliminary energy spectrum shows a candidate peak of the $2^+_1 \rightarrow 0^+_1$ transition observed at an energy consistent with the aforementioned range of theoretical predictions. The spectra coincident with other reaction channels, which produce ${}^{56}\text{Ca}$, are also under analysis.

References

- P. Doornenbal, A. Obertelli, RIKEN Proposal for Scientific Program (2013).
- D. Steppenbeck *et al.*, Nature (London) **502**, 207 (2013).
- 3) A. Obertelli et al., Eur. Phys. J. A 50, 8 (2014).
- 4) I. Murray *et al.*, In this report.
- T. Kobayashi *et al.*, Nucl. Instrum. Methods B **317**, 294 (2013).

^{*&}lt;sup>1</sup> School of Physics, Peking University

^{*&}lt;sup>2</sup> Department of Physics, The University of Hong Kong