Robustness of the N = 34 shell closure: First spectroscopy of ⁵²Ar

H. N. Liu,^{*1,*2} Y. L. Sun,^{*1} A. Obertelli,^{*3,*1,*4} P. Doornenbal,^{*4} H. Baba,^{*4} F. Browne,^{*4} D. Calvet,^{*1}

F. Château,^{*1} S. Chen,^{*5,*6,*4} N. Chiga,^{*4} A. Corsi,^{*1} M. L. Cortés,^{*4} A. Delbart,^{*1} J-M. Gheller,^{*1} A. Giganon,^{*1}

^A. Château,^{*1} S. Chen,^{*5,*6},^{*4} N. Chiga,^{**} A. Corsi,^{*1} M. L. Cortés,^{**} A. Delbart,^{*1} J-M. Gheller,^{*1} A. Giganon,^{*} A. Gillibert,^{*1} C. Hilaire,^{*1} T. Isobe,^{*4} T. Kobayashi,^{*7} Y. Kubota,^{*4,*8} V. Lapoux,^{*1} T. Motobayashi,^{*4} I. Murray,^{*9,*4} H. Otsu,^{*4} V. Panin,^{*4} N. Paul,^{*1} W. Rodriguez,^{*10,*4} H. Sakurai,^{*4,*12} M. Sasano,^{*4} D. Steppenbeck,^{*4} L. Stuhl,^{*8} Y. Togano,^{*11,*4} T. Uesaka,^{*4} K. Wimmer,^{*12,*4} K. Yoneda,^{*4} N. Achouri,^{*13} O. Aktas,^{*2} T. Aumann,^{*3} L. X. Chung,^{*14} F. Flavigny,^{*9} S. Franchoo,^{*9} I. Gašparić,^{*15,*4} R. -B. Gerst,^{*17} J. Gibelin,^{*13} K. I. Hahn,^{*18} D. Kim,^{*18,*4} T. Koiwai,^{*12} Y. Kondo,^{*19} P. Koseoglou,^{*3,*16} J. Lee,^{*6} C. Lehr,^{*3}

- B. D. Linh,^{*14} T. Lokotko,^{*6} M. Maccormick,^{*9} K. Moschner,^{*17} T. Nakamura,^{*19} S. Y. Park,^{*18,*4} D. Rossi,^{*3}
- E. Sahin,^{*20} D. Sohler,^{*21} P-A. Söderström,^{*3} S. Takeuchi,^{*19} H. Toernqvist,^{*16} V. Vaquero,^{*22} V. Wagner,^{*3,*4}
 S. Wang,^{*23} V. Werner,^{*3} X. Xu,^{*6} H. Yamada,^{*19} D. Yan,^{*23} Z. Yang,^{*4} M. Yasuda,^{*19} and L. Zanetti^{*3}

It is now well known that magic numbers are not universal across the nuclear landscape and that new shell closures may emerge in exotic nuclei. For example, a new subshell closure at N = 34 has been predicted for neutron-rich nuclei.¹⁾ On the experimental side, the systematics of the $E(2_1^+)$ of Ti isotopes show no evidence for the existence of the N = 34 shell gap.²⁾ Recently, the $E(2_1^+)$ of ⁵⁴Ca was measured to be ~0.5 MeV smaller than that of 52 Ca.³⁾ This drop was attributed to the larger ground state correlation energy of 52 Ca, and the results were interpreted as confirming the N = 34 magic number in Ca isotopes. For ⁵²Ar, no spectroscopic information has been measured; however, its $E(2_1^+)$ was predicted to be the highest among Ar isotopes with N $> 20.^{4}$ The spectroscopy of ⁵²Ar thus offers a unique chance to explore the robustness of the N = 34 subshell closure and pin down the mechanism of its emergence.

The measurement of ${}^{52}Ar$ was performed at the RIBF as part of the third campaign of the SEASTAR The fast radioactive beam containing program. ⁵³K, amongst other products, was produced by fragmentation of a ~ 220 pnA 70 Zn primary beam at 345 MeV/nucleon on a 10-mm thick Be target. The constituents were identified using the BigRIPS frag-

- *1 IRFU, CEA, Université Paris-Saclay
- *2 Department of Physics, KTH
- *3 Institut für Kernphysik, TU Darmstadt
- *4 **RIKEN** Nishina Center
- *5Department of Physics, Peking University
- Department of Physics, The University of Hong Kong Department of Physics, Tohoku University *6
- *7
- *8 CNS, The University of Tokyo
- *9 IPN Orsay, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay
- *¹⁰ Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Física
- *11 Department of Physics, Rikkyo University
- *¹² Department of Physics, The University of Tokyo
- *¹³ LPC, Caen
- *14INST Hanoi
- ^{*15} Ruđer Bošković Institute, Zagreb
- *¹⁶ GSI Helmoltzzentrum Darmstadt
- $^{\ast 17}$ Institut für Kernphysik, Universität zu Köln
- ^{*18} Department of Physics, Ewha Womans University
- ^{*19} Department of Physics, Tokyo Institute of Technology
- *²⁰ Department of Physics, University of Oslo
- *²¹ MTA Atomki
- $^{\ast 22}$ Instituto de Estructura de la Materia, CSIC
- ^{*23} Institute of Modern Physics, Chinese Academy of Sciences

Fig. 1. Particle identification after the secondary target.

ment separator with the ΔE -TOF- $B\rho$ method. The incident beam, magnetically centered on ⁵³K, was impinged on a 150-mm thick $MINOS^{5}$ liquid hydrogen target to induce proton-removal reactions. The recoil protons were detected by the MINOS TPC tracker⁵⁾ to reconstruct the reaction vertex. The MINOS efficiency was measured to be 90(5)%. The kinematic energy and intensity of the ⁵³K beam in front of the target were $\sim 240 \text{ MeV/nucleon}$ and 1.0 pps, respectively. The reaction residues passed through the SAMURAI⁶ magnet with a central magnetic field of 2.7 T, and were identified by a 24-element plastic hodoscope and two forward drift chambers. Figure 1 shows the particle identification of the reaction residues. The de-excitation γ rays from the reaction residues were measured by the upgraded DALI2+ array,⁷⁾ which consists of 226 NaI(Tl) crystals. The preliminary Doppler-corrected γ -ray spectrum of ⁵²Ar was obtained, and a clear (2⁺₁ $\rightarrow 0^+_1$) candidate peak was found. Evidence for other transitions in ⁵²Ar requires further analysis.

References

- 1) T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001).
- 2) S. N. Liddick et al., Phys. Rev. Lett. 92, 072502 (2004).
- 3) D. Steppenbeck et al., Nature (London) 502, 207 (2013).
- 4) D. Steppenbeck et al., Phys. Rev. Lett. 114, 252501 (2015).
- 5) A. Obertelli et al., Eur. Phys. J. A 50, 8 (2014).
- T. Kobayashi et al., Nucl. Instrum. Methods B 317, 294 (2013).
- 7) I. Murray et al., in this report.