Shell evolution at N = 40 towards ⁶⁰Ca: Spectroscopy of ⁶²Ti

M. L. Cortés,^{*1} W. Rodriguez,^{*2,*1} P. Doornenbal,^{*1} A. Obertelli,^{*3,*4,*1} N. Achouri,^{*5} H. Baba,^{*1} F. Browne,^{*1}

D. Calvet,^{*4} F. Château,^{*4} S. Chen,^{*6,*1} N. Chiga,^{*1} A. Corsi,^{*4} A. Delbart,^{*4} J-M. Gheller,^{*4} A. Giganon,^{*4} A. Gillibert,^{*4} C. Hilaire,^{*4} T. Isobe,^{*1} T. Kobayashi,^{*8} Y. Kubota,^{*1,*7} V. Lapoux,^{*4} H. N. Liu,^{*4,*9}

A. Ginbert, C. Halre, T. Isobe, T. Kobayashi, Y. Kubota, Y. V. Lapoux, H. N. Liu, T. Motobayashi,^{*1} I. Murray,^{*10,*1} H. Otsu,^{*1} V. Panin,^{*1} N. Paul,^{*4} H. Sakurai,^{*1,*11} M. Sasano,^{*1} D. Steppenbeck,^{*1} L. Stuhl,^{*7} Y. L. Sun,^{*4} Y. Togano,^{*12,*1} T. Uesaka,^{*1} K. Wimmer,^{*11,*1} K. Yoneda,^{*1} O. Aktas,^{*9} T. Aumann,^{*3} L. X. Chung,^{*13} F. Flavigny,^{*10} S. Franchoo,^{*10} I. Gasparic,^{*14,*1} R.-B. Gerst,^{*15} J. Gibelin,^{*5} K. I. Hahn,^{*16} D. Kim,^{*16,*1} T. Koiwai,^{*11} Y. Kondo,^{*17} P. Koseoglou,^{*3,*18} J. Lee,^{*19} C. Lehr,^{*3}

B. D. Linh,^{*13} T. Lokotko,^{*19} M. MacCormick,^{*10} K. Moschner,^{*15} T. Nakamura,^{*17} S. Y. Park,^{*16,*1}

D. Rossi,^{*18} E. Sahin,^{*20} D. Sohler,^{*21} P-A. Söderström,^{*3} S. Takeuchi,^{*17} H. Toernqvist,^{*18} V. Vaquero,^{*22} V. Wagner,^{*3,*1} S. Wang,^{*23} V. Werner,^{*3} X. Xu,^{*19} H. Yamada,^{*17} D. Yan,^{*23} Z. Yang,^{*1} M. Yasuda,^{*17} and

L. Zanetti^{*3}

Experimental evidence collected in the last years show the disappearance of the shell closures at N = 8, 20 and 28 in various neutron-rich isotopes, as well as the appearance of new magic numbers, such as N = 32and 34 for Ca isotopes.^{1,2)} Given that N = 40, which corresponds to the filling of the fp neutron shells, is predicted to be a sub-shell closure, the study of the structure of N = 40 isotones can provide insight into the mechanism governing shell evolution. A low collectivity is observed in ⁶⁸Ni, consistent with the magic character of N = 40.3 However, for the Fe and Cr isotopes, a monotonous decrease of the 2^+ energy with increasing neutron number is observed.^{4,5}) Such a decrease, which extends beyond N = 40, indicates a rapid increase of collectivity when removing protons from the $f_{7/2}$ shell. For the case of the Ti isotopes, measurements of the 2^+ energy of ${}^{58,60}\text{Ti}{}^{6,7)}$ do not show an unexpected decrease towards N = 40, although it has been suggested that full consideration of the $q_{9/2}$ orbital is required to understand the structure at $N = 40.^{7}$ To further understand the shell evolution in N = 40 isotones towards the supposedly doublymagic 60 Ca, the measurement of the first excited 2^+

- *1 **RIKEN** Nishina Center
- Departamento de Física, Universidad Nacional de Colombia *2
- *3 Institut für Kernphysik, Technische Universität Darmstadt
- *4IRFU, CEA, Université Paris-Saclay
- *5 LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3
- *6 Department of Physics, Peking University
- *7Center for Nuclear Study, University of Tokyo
- *8 Department of Physics, Tohoku University
- *9 Department of Physics, Royal Institute of Technology
- *10IPN Orsay, CNRS, Univ. Paris Sud, Univ. Paris Saclay
- $^{\ast 11}$ Department of Physics, University of Tokyo
- *12 Department of Physics, Rikkyo University
- $^{\ast 13}$ Institute for Nuclear Science & Technology, VINATOM
- *¹⁴ Rudjer Boskovic Institute
- *15Institut für Kernphysik, Universität zu Köln
- *¹⁶ Ewha Womans University
- *17 Department of Physics, Tokyo Institute of Technology
- *18 GSI Helmoltzzentrum für Schwerionenforschung GmbH
- $^{\ast 19}$ Department of Physics, The University of Hong Kong
- *²⁰ Department of Physics, University of Oslo
- *²¹ MTA Atomki
- $^{\ast 22}$ Instituto de Estructura de la Materia, CSIC
- *23 Institute of Modern Physics, Chinese Academy of Sciences

state of ⁶²Ti is necessary.

In the third SEASTAR campaign, ⁶²Ti was produced by proton knock-out of 63 V at 250 MeV/nucleon on the MINOS liquid hydrogen target.⁹⁾ The ^{63}V isotopes were produced by fragmentation of a 345 MeV/nucleon primary beam of ⁷⁰Zn impinging on a 10-mm Be target and separated using the BigRIPS spectrometer. The average intensity of the Zn beam was 250 pnA, and the average rate of 63 V was 3 pps. The MINOS target, of 150 mm length, was placed at the F13 experimental area, in front of the SAMU-RAI magnet. Reaction products were identified on an event-by-event basis using the standard SAMURAI detectors.⁸⁾ NEBULA and NeuLAND neutron detectors were also used during the experiment. γ -rays emitted by the reaction products were detected using the upgraded DALI2+ array,¹⁰⁾ consisting of 226 NaI detectors surrounding MINOS. The ongoing data analysis has already provided the incoming particle identification as shown in Fig. 1.

Fig. 1. Incoming particle ID. 63 V is labeled in red.

References

N

- 1) F. Wienholtz et al., Nature (London) 498, 346 (2013).
- 2) D. Steppenbeck et al., Nature (London) 502, 207 (2013).
- 3) O. Sorlin et al., Phys. Rev. Lett. 88, 092501 (2002).
- 4) J. Ljungvall et al., Phys. Rev. C 81, 061301 (2010).
- 5) A. Gade *et al.*, Phys. Rev. C **81**, 051304 (2010).
- 6) H. Suzuki et al., Phys. Rev. C 88, 024326 (2013).
- 7) A. Gade et al., Phys. Rev. Lett. 112, 112503 (2014).
- 8) T. Kobayashi et al., Nucl. Instrum. Methods Phys. Res. B 317, 294 (2013).
- 9) A. Obertelli et al., Eur. Phys. J. A 50, 8 (2014).
- 10) I. Murray *et al.*, in this report.