Single-neutron knockout from ${}^{20}C$ and the structure of ${}^{19}C^{\dagger}$

J.W. Hwang,^{*1,*2} S. Kim,^{*1,*2} Y. Satou,^{*1} N. A. Orr,^{*3} Y. Kondo,^{*4,*2} T. Nakamura,^{*4,*2} J. Gibelin,^{*3} N. L. Achouri,^{*3} T. Aumann,^{*5} H. Baba,^{*2} F. Delaunay,^{*3} P. Doornenbal,^{*2} N. Fukuda,^{*2} N. Inabe,^{*2} T. Isobe,^{*2} D. Kameda,^{*2} D. Kanno,^{*4,*2} N. Kobayashi,^{*4,*2} T. Kobayashi,^{*6,*2} T. Kubo,^{*2} S. Leblond,^{*3} J. Lee,^{*2} F. M. Marques,^{*3} R. Minakata,^{*4,*2} T. Motobayashi,^{*2} D. Murai,^{*7} T. Murakami,^{*8} K. Muto,^{*6} T. Nakashima,^{*4,*2} N. Nakatsuka,^{*8} A. Navin,^{*9} S. Nishi,^{*4,*2} S. Ogoshi,^{*4,*2} H. Otsu,^{*2} H. Sato,^{*2} Y. Shimizu,^{*2} H. Suzuki,^{*2} K. Takahashi,^{*6} H. Takeda,^{*2} S. Takeuchi,^{*2} R. Tanaka,^{*4,*2} Y. Togano,^{*10} A. G. Tuff,^{*11} M. Vandebrouck,^{*12} and K. Yoneda^{*2}

The unbound states of ¹⁹C have been investigated using the one-neutron knockout reaction. ¹⁹C has a well established 1*n* halo structure with a weakly bound *s*-wave neutron. The almost degenerate $0d_{5/2}$ and $1s_{1/2}$ orbitals are expected to govern the low-lying level structure of ¹⁹C, comprising $1/2^+$, $3/2^+$, and $5/2^+$ states.¹⁾ Theoretically, while most shell models suggest that these states are closely located below 1 MeV, their ordering has remained uncertain. Experimentally, a few studies have reported the low-lying states including $3/2_1^+$ and $5/2_1^+$. There is an argument of the bound nature of $5/2_1^+$ provided by recent measurements.²⁾

The ²⁰C beam of 280 MeV/nucleon at midtarget was produced from BigRIPS with using a 345 MeV/nucleon ⁴⁸Ca primary beam (~100 pnA). The secondary beam impinged on a secondary carbon target (1.8 g/cm²) in front of the SAMURAI spectrometer to produce ¹⁹C.³) The decay products, including ¹⁸C and a neutron, were detected using SAMURAI and NEBULA neutron array. Note that the measurement was a part of the first experimental campaign using SAMURAI to study the light neutron-rich nuclei.⁴)

Figures 1 show the relative energy $(E_{\rm rel})$ spectrum for the ¹⁸C + n system containing a narrow threshold resonance and two peaks at higher energies. The positions were determined to be at 0.036(1), 0.84(4), and 2.31(3) MeV by fitting analysis with R-matrix lineshapes convoluted with the experimental resolution. The longitudinal momentum distributions for each resonance show clear ℓ characters compared with Glauber model calculation.⁵⁾ Such results allow the spin-parity assignment of $5/2_1^+$ and $1/2_1^-$ for the levels

- † Condensed from the article in Phys. Lett. B 769, 503-508 (2017)
- *1 Department of Physics and Astronomy, Seoul National University
- *² RIKEN Nishina Center
- $^{\ast 3}~$ LPC-Caen, ENSICAEN, Université de Caen, CNRS/IN2P3
- *4 Department of Physics, Tokyo Institute of Technology
- *5 Institut für Kernphysik, Technische Universität Darmstadt
- *6 Department of Physics, Tohoku University
- *7 Department of Physics, Rikkyo University
- *8 Department of Physics, Kyoto University
- *9 GANIL, CEA/DSM-CNRS/IN2P3
- *10 ExtreMe Matter Institute (EMMI) and Research Division, GSI
- *¹¹ Department of Physics, University of York
- $^{\ast 12}$ Institut de Physique Nucléaire, Université Paris-Sud, IN2P3-CNRS

Fig. 1. Relative energy spectrum for the ${}^{18}\text{C} + n$ system up to (a) 0.5 MeV and (b) 5 MeV. The solid (green), dashed (red), and dot-dashed (blue) curves represent the lineshapes of the results of the fit, individual resonances, and background, respectively.

at $E_x = 0.62(9)$ and 2.89(10) MeV with $S_n = 0.58(9)$ MeV. Spectroscopic factors were also found to agree with the shell-model calculations. The valence neutron configuration of the ${}^{20}C_{g.s.}$ is thus expected to have a significant $0d_{5/2}^2$ contribution together with the known $1s_{1/2}^2$ component. The level scheme of ${}^{19}C$ is well described by the shell model with YSOX interaction based on the monopole-based universal interaction.⁶

References

- 1) M. Stanoiu et al., Phys. Rev. C 78, 034315 (2008).
- 2) N. Kobayashi et al., Phys. Rev. C 86, 054604 (2012).
- T. Kobayashi *et al.*, Nucl. Instrum. Methods Phys. Res. Sect. B **317**, 294 (2013).
- 4) Y. Kondo et al., Phys. Rev. Lett. 116, 102503 (2016).
- C. A. Bertulani, A. Gade, Comput. Phys. Commun. 175, 372 (2006).
- 6) C. Yuan et al., Phys. Rev. C 85, 064324 (2012).