Single-neutron knockout from ${ }^{20} \mathrm{C}$ and the structure of ${ }^{19} \mathrm{C}^{\dagger}$

J.W. Hwang, ${ }^{, 1, * 2}$ S. Kim, ${ }^{* 1, * 2}$ Y. Satou, ${ }^{* 1}$ N. A. Orr, ${ }^{* 3}$ Y. Kondo, ${ }^{* 4, * 2}$ T. Nakamura, ${ }^{* 4, * 2}$ J. Gibelin, ${ }^{* 3}$ N. L. Achouri, ${ }^{* 3}$ T. Aumann, ${ }^{* 5}$ H. Baba, ${ }^{* 2}$ F. Delaunay, ${ }^{* 3}$ P. Doornenbal, ${ }^{* 2}$ N. Fukuda, ${ }^{* 2}$ N. Inabe, ${ }^{* 2}$ T. Isobe, ${ }^{* 2}$ D. Kameda, ${ }^{* 2}$ D. Kanno,,${ }^{* 4, * 2}$ N. Kobayashi, ${ }^{* 4, * 2}$ T. Kobayashi, ${ }^{* 6, * 2}$ T. Kubo, ${ }^{* 2}$ S. Leblond, ${ }^{* 3}$ J. Lee, ${ }^{* 2}$ F. M. Marques, ${ }^{* 3}$ R. Minakata, ${ }^{* 4, * 2}$ T. Motobayashi, ${ }^{* 2}$ D. Murai, ${ }^{* 7}$ T. Murakami, ${ }^{* 8}$ K. Muto, ${ }^{* 6}$ T. Nakashima, ${ }^{* 4, * 2}$ N. Nakatsuka, ${ }^{* 8}$ A. Navin, ${ }^{* 9}$ S. Nishi, ${ }^{* 4, * 2}$ S. Ogoshi, ${ }^{* 4, * 2}$ H. Otsu, ${ }^{* 2}$ H. Sato, ${ }^{* 2}$ Y. Shimizu, ${ }^{* 2}$ H. Suzuki, ${ }^{* 2}$ K. Takahashi, ${ }^{* 6}$ H. Takeda, ${ }^{* 2}$ S. Takeuchi, ${ }^{* 2}$ R. Tanaka, ${ }^{* 4, * 2}$ Y. Togano, ${ }^{* 10}$ A. G. Tuff, ${ }^{* 11}$ M. Vandebrouck, ${ }^{* 12}$ and K. Yoneda*2

The unbound states of ${ }^{19} \mathrm{C}$ have been investigated using the one-neutron knockout reaction. ${ }^{19} \mathrm{C}$ has a well established $1 n$ halo structure with a weakly bound s-wave neutron. The almost degenerate $0 d_{5 / 2}$ and $1 s_{1 / 2}$ orbitals are expected to govern the low-lying level structure of ${ }^{19} \mathrm{C}$, comprising $1 / 2^{+}, 3 / 2^{+}$, and $5 / 2^{+}$ states. ${ }^{1)}$ Theoretically, while most shell models suggest that these states are closely located below 1 MeV , their ordering has remained uncertain. Experimentally, a few studies have reported the low-lying states including $3 / 2_{1}^{+}$and $5 / 2_{1}^{+}$. There is an argument of the bound nature of $5 / 2_{1}^{+}$provided by recent measurements. ${ }^{2)}$
The ${ }^{20} \mathrm{C}$ beam of $280 \mathrm{MeV} /$ nucleon at midtarget was produced from BigRIPS with using a $345 \mathrm{MeV} /$ nucleon ${ }^{48} \mathrm{Ca}$ primary beam ($\sim 100 \mathrm{pnA}$). The secondary beam impinged on a secondary carbon target $\left(1.8 \mathrm{~g} / \mathrm{cm}^{2}\right)$ in front of the SAMURAI spectrometer to produce ${ }^{19} \mathrm{C} .{ }^{3)}$ The decay products, including ${ }^{18} \mathrm{C}$ and a neutron, were detected using SAMURAI and NEBULA neutron array. Note that the measurement was a part of the first experimental campaign using SAMURAI to study the light neutron-rich nuclei. ${ }^{4)}$

Figures 1 show the relative energy ($E_{\text {rel }}$) spectrum for the ${ }^{18} \mathrm{C}+n$ system containing a narrow threshold resonance and two peaks at higher energies. The positions were determined to be at $0.036(1), 0.84(4)$, and $2.31(3) \mathrm{MeV}$ by fitting analysis with R-matrix lineshapes convoluted with the experimental resolution. The longitudinal momentum distributions for each resonance show clear ℓ characters compared with Glauber model calculation. ${ }^{5)}$ Such results allow the spin-parity assignment of $5 / 2_{1}^{+}$and $1 / 2_{1}^{-}$for the levels

[^0]

Fig. 1. Relative energy spectrum for the ${ }^{18} \mathrm{C}+n$ system up to (a) 0.5 MeV and (b) 5 MeV . The solid (green), dashed (red), and dot-dashed (blue) curves represent the lineshapes of the results of the fit, individual resonances, and background, respectively.
at $E_{x}=0.62(9)$ and $2.89(10) \mathrm{MeV}$ with $S_{n}=0.58(9)$ MeV . Spectroscopic factors were also found to agree with the shell-model calculations. The valence neutron configuration of the ${ }^{20} \mathrm{C}_{\text {g.s. }}$ is thus expected to have a significant $0 d_{5 / 2}^{2}$ contribution together with the known $1 s_{1 / 2}^{2}$ component. The level scheme of ${ }^{19} \mathrm{C}$ is well described by the shell model with YSOX interaction based on the monopole-based universal interaction. ${ }^{6)}$

References

1) M. Stanoiu et al., Phys. Rev. C 78, 034315 (2008).
2) N. Kobayashi et al., Phys. Rev. C 86, 054604 (2012).
3) T. Kobayashi et al., Nucl. Instrum. Methods Phys. Res. Sect. B 317, 294 (2013).
4) Y. Kondo et al., Phys. Rev. Lett. 116, 102503 (2016).
5) C. A. Bertulani, A. Gade, Comput. Phys. Commun. 175, 372 (2006).
6) C. Yuan et al., Phys. Rev. C 85, 064324 (2012).

[^0]: \dagger Condensed from the article in Phys. Lett. B 769, 503-508 (2017)
 *1 Department of Physics and Astronomy, Seoul National University
 *2 RIKEN Nishina Center
 *3 LPC-Caen, ENSICAEN, Université de Caen, CNRS/IN2P3
 *4 Department of Physics, Tokyo Institute of Technology
 *5 Institut für Kernphysik, Technische Universität Darmstadt
 *6 Department of Physics, Tohoku University
 *7 Department of Physics, Rikkyo University
 *8 Department of Physics, Kyoto University
 *9 GANIL, CEA/DSM-CNRS/IN2P3
 *10 ExtreMe Matter Institute (EMMI) and Research Division, GSI
 *11 Department of Physics, University of York
 *12 Institut de Physique Nucléaire, Université Paris-Sud, IN2P3-CNRS

