One-pot three-component double-click method for synthesis of $[^{67}Cu]$ -labeled biomolecular radiotherapeutics[†]

K. Fujiki,^{*1} S. Yano,^{*2} T. Ito,^{*3} Y. Kumagai,^{*3} Y. Murakami,^{*3} O. Kamigaito,^{*2} H. Haba,^{*2} and K. Tanaka^{*1,*4,*5}

A one-pot three-component double-click process to prepare tumor-targeting agents for cancer radiotherapy is described here. By utilizing DOTA (or NOTA) containing tetrazines (DOTA: 1, 4, 7, 10tetraazadodecane-1, 4, 7, 10-tetraacetic acid, NOTA: 1, 4, 7-triazacyclononane-1, 4, 7-triacetic acid) and the TCO-substituted aldehyde (TCO: trans-cyclooctene), the two click reactions, the tetrazine ligation (an inverse electron-demand Diels-Alder cycloaddition)¹) and the RIKEN click (a rapid 6π -azaelectrocyclization),²⁻⁸⁾ could simultaneously proceed under mild conditions to afford the covalent attachment of the DOTA or NOTA, which forms a bioavailable stable complex with copper (II), to biomolecules such as albumin and anti-IGSF4 antibody without altering their activities (Fig. 1).

Subsequently, the radiolabeling of DOTA- or NOTAattached albumin and anti-IGSF4 antibody (a tumortargeting antibody) with $^{67}\mathrm{Cu}$ as a promising β^-/γ e-mitting the ranostic radionuclide having a half-life of

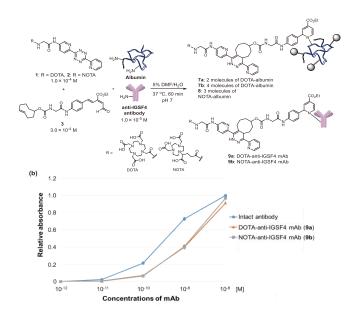


Fig. 1. (a) One-pot three-component click labeling of albumin and anti-IGSF4 antibody as a cancer-targeting agent.
(b) Affinities of intact and labeled anti-IGSF4 antibodies to IGSF4 analyzed by ELISA. DMF = N,N-dimethyl formamide, ELISA = enzyme-linked immunosorbent assay.

- ^{\dagger} Condensed from the article in Sci. Rep. **7**, 1912 (2017)
- *1 Biofunctional Synthetic Chemistry Laboratory, RIKEN
 *2 DIKEN Niching Contor
- *² RIKEN Nishina Center *³ The Institute of Medice
- *³ The Institute of Medical Science, University of Tokyo
- ^{*4} Biofunctional Chemistry Laboratory, Kazan Federal Univer-
- ^{*5} JST-PRESTO

62 h, which is compatible with radio immunotherapy, could be achieved by mixing DOTA- or NOTA-attached albumin and anti-IGSF4 antibody with RIs and subsequent purification by Amicon filtration; a separate experiment with ⁶⁵Zn was conducted for comparison (Fig. 2 and Table 1). ⁶⁷Cu and ⁶⁵Zn could be produced in the ⁷⁰Zn(d, αn)⁶⁷Cu and ^{nat}Cu(d, x)⁶⁵Zn reactions at the AVF cyclotron. Our work provides a new and operationally simple method for introducing ⁶⁷Cu to biomolecules, which is an important process for preparing clinically relevant tumor-targeting agents.

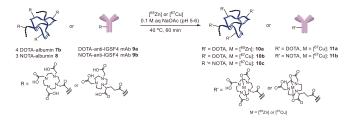


Fig. 2. Radiolabelings of DOTA or NOTA-attached albumins and anti-IGSF4 antibody.

Table 1. Radiochemical yields (RCY) of 67 Cu and 65 Zn.

Enters	<u></u>	A d d = d [6572 - 1	RCY ^b
Entry	Chelator-attached	Added [65Zn] or	RC Y *
	biomolecules	[⁶⁷ Cu] ^a	(%)
		(Radioactivities)	
1	DOTA-albumin 7b	[65Zn] (300 kBq)	80
2	DOTA-albumin 7b	[⁶⁷ Cu] (11 MBq)	72
3	DOTA-anti-IGSF4	[⁶⁷ Cu] (11 MBq)	51
	mAb 9a		
4	NOTA-albumin 8	[⁶⁷ Cu] (11 MBq)	19
5	NOTA-anti-IGSF4	[⁶⁷ Cu] (11 MBq)	7
	mAb 9b	-	

 $^{a)}$ Specific activities of ^{67}Cu and ^{65}Zn were 110 MBq/µg and 125 MBq/µg, respectively.

^{b)} RCY (Radiochemical yield) was obtained from the radioactivity of the purified radiolabeled product against the added [65 Zn] or [67 Cu].

References

- M. L. Blackman, M. Royzen, J. M. Fox, J. Am. Chem. Soc. 130, 13518 (2008).
- 2) K. Tanaka et al., Angew. Chem. Int. Ed. 47, 102 (2008).
- 3) K. Tanaka et al., Angew. Chem. Int. Ed. 49, 8195 (2010).
- K. Fukase, K. Tanaka, Curr. Opin. Chem. Biol. 16, 614 (2012).
- 5) K. Tanaka et al., J. Org. Chem. 66, 3099 (2001).
- K. Tanaka, S. Katsumura, J. Am. Chem. Soc. **124**, 9660 (2002).
- 7) K. Tanaka et al., J. Org. Chem. 69, 5906 (2004).
- K. Fujiki, K. Tanaka, e-EROS Encyclopedia of Reagents for Organic Synthesis (Wiley, 2018) in press.