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Low-dose high-LET heavy ion-induced bystander signaling (IV)

M. Tomita,*!*? T. Tsukada,*? and M. Izumi*?

Radiation-induced bystander response (RIBR) is a
cellular response induced in non-irradiated cells that
received bystander signals from directly irradiated cells
within an irradiated cell population.)) RIBR induced
by low doses of high-LET radiation is an important is-
sue for the health of astronauts and in hadrontherapy.
Here, we investigated the underlying molecular mecha-
nisms and biological implications of RIBR induced by
such low doses of high-LET radiation.

We found that normal human fibroblasts cultured
confluent, which were harvested 16-24 h after exposure
to high-LET (1000 keV/pum) iron (Fe) ions, showed
the cell killing effect at low doses (< 0.2 Gy) higher
than that estimated by a linear extrapolation from
high doses. This enhanced cell killing effect could not
be observed in the cells harvested immediately after
irradiation.?) At 0.1 Gy, the average number of Fe-
ion traversals per cell nucleus was 0.11; however, the
surviving fraction was 0.84.3) These results suggested
that the enhanced cell killing effect at low doses was at
least partly caused by the induction of bystander re-
sponses. In addition, we established an optimal system
to assess the low doses of high-LET radiation-induced
bystander cell killing, and reported that gap-junction
intercellular communication (GJIC), cyclooxygenase-2
(COX-2), and nitric oxide (NO) were involved in its
signal transfer.?)

In our previous study using high-LET heavy-ion
microbeam and broadbeam,*) we showed that DNA
double-strand breaks (DSBs) and reproductive cell
death were induced by NO-mediated bystander re-
sponse in normal human fibroblasts. In addition, the
activation of NF-xB, Akt, and COX-2 by bystander
signaling depended on incubation time after irradia-
tion and presence of NO. In this study, we investigated
phosphorylation and accumulation of these bystander
signaling related molecules in the cells irradiated with
low doses of high-LET radiation.

Figure 1 shows phosphorylation and accumulation of
bystander signaling related molecules in normal human
fibroblasts, WI-38, irradiated with 0.1 Gy of 90 MeV /u
Fe ions (1000 keV/um). WI-38 cells were cultured
on 25 cm? plastic flasks for 1 week to form conflu-
ent monolayers and were pretreated with or without a
scavenger of NO, ¢-PTIO, (20 uM) 2 h before irradi-
ation with 0.1 Gy of Fe ions. Cells were harvested 3
and 6 h after irradiation followed by immunoblotting.
Phosphorylation of Akt at Ser473 and NF-xB p65 at
Ser536 and accumulation of COX-2 were observed in
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the cell 3 h after irradiation and were efficiently in-
hibited by pretreatment with c-PTTO. Phosphorylated
histone H2AX at Ser139 is widely used as a surrogate
marker of DSBs. Phosphorylated histone H2AX was
observed at 3 and 6 h after irradiation. Prolonged
phosphorylation of H2AX at 6 h after irradiation was
inhibited by ¢-PTIO, although phosphorylation at 3 h
was not suppressed. NO-mediated prolonged phos-
phorylation of H2AX also indicated the induction of
bystander responses. These results suggest that NF-
kB/COX-2/prostaglandin E2 and NF-xB/iNOS/NO
pathways'®) are activated in the cells irradiated with
low doses of high-LET radiation.
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Fig. 1. Phosphorylation and accumulation of bystander

signaling related molecules. Normal human fibrob-
lasts, WI-38, were pretreated with or without c-PTIO
(20 uM) 2 h before irradiation with 0.1 Gy of 90 MeV /u
Fe ions (1000 keV/pm). Cells were harvested 3 and 6 h
after irradiation followed by immunoblotting.
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