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Exact algebraic separability criterion for two-qubit systems'

K. Fujikawa*! and C. H. Oh*2

A conceptually simpler proof of the separability cri-
terion for two-qubit systems, which is referred to as
“Hefei inequality” in literature,!) is analyzed. This
inequality gives a necessary and sufficient separabil-
ity criterion for any mixed two-qubit system unlike
the Bell-CHSH inequality®?) which cannot test mixed-
states such as the Werner state*) when regarded as
a separability criterion. The original derivation of
this inequality®) emphasized the uncertainty relation of
complementary observables; however, we show that the
uncertainty relation does not play any role in the actual
derivation and that the Peres-Hodrodecki condition®
is solely responsible for the inequality. Our deriva-
tion, which contains technically novel aspects such as
an analogy to the Dirac equation, sheds light on this
inequality and on the fundamental issue of the to ex-
tent to which the uncertainty relation can provide a
test of entanglement. This separability criterion is il-
lustrated for an exact treatment of the Werner state.

Our starting point is the fact that the general pure
two-qubit states are brought to the standard form by
the Schmidt decomposition

@) = (W@ v)si|+) ®[=) —s2e®|-) @ [+)] (1)
with
1 0
and real numbers s? + s2 = 1 and §. Namely, the

states are parametrized by si, s3, § and two unitary
matrices v and v. It is then shown that this system is
represented formally in terms of a 4-dimensional Dirac
notation.

We then obtain the inequalities (separability crite-
rion)

(P_)2 > (y370P-)2 + (v270P-)5 + (M P-)2,
(Py)?2 > (1370 P)2 + (1200 P-)2 + (mvP-)2, (3)
where Py = (14 5)/2 and

(v370Px), = Tryzyo Pep, (4)

for example, using the Peres-Horodecki criterion with-
out referring to the uncertainty relations.

As for the test of the Werner state?) which is defined
by

pu= 301 = )L+ Bl 0 (5)
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with the singlet state |1,) = (1/v2)[|+)]=) — [=)]+)],
we obtain

1>3+28. (6)

We thus conclude that the separability condition of the
Werner state is equivalent to

1

which agrees with the result of a more explicit analysis
of pw.® This in particular implies that 3 > % stands
for an inseparable state.

We have re-analyzed one of the representative in-
equalities proposed in Ref. 1) and have shown that
the uncertainty relations cannot be alternative to the
Peres-Horodecki condition in the analysis of entangle-
ment for general two-qubit systems. The “Hefei in-
equality,” however, stands for a rare algebraic criterion
that is applicable to any mixed state that cannot be
tested by the Bell-CHSH inequality in general,®?) as
was illustrated by an exact treatment of the Werner
state.

Here, in comparison with the criterions of separabil-
ity of two-qubit systems, we briefly mention a corre-
sponding test of the separability of systems with two
continuous degrees of freedom.%®) In the problem of
two-party continuum case with two-dimensional con-
tinuous phase space freedom (p,q) in each party, it is
possible to re-formulate the problem such that®

(1) the uncertainty relation leads to a necessary con-
dition for separable two-party systems,

(2) the derived condition is sufficient to prove the
separability of two-party Gaussian systems.

Namely, the uncertainty relation without referring
to the Peres-Horodecki criterion® provides a neces-
sary and sufficient separability condition for two-party
Gaussian systems.
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