Production of a 7Be implanted target

A. Inoue, ^{*1} A. Tamii, ^{*1,*7} H. Yamaguchi, ^{*2} K. Abe, ^{*2} S. Adachi ^{*1} N. Aoi, ^{*1,*7} M. Asai, ^{*3} M. Fukuda, ^{*4} G. Gay, ^{*1} T. Hashimoto, ^{*5} S. Hayakawa, ^{*2} E. Ideguchi, ^{*1} N. Kobayashi, ^{*1} Y. Maeda, ^{*6} H. Makii, ^{*3} K. Matsuta, ^{*4,*7} M. Mihara, ^{*4} M. Miura, ^{*1} T. Shima, ^{*1} H. Shimizu, ^{*2} R. Tang, ^{*1} T. D. Trong, ^{*1} and L. Yang ^{*2}

The beam system for reaction of isotope of long-life with light-ions applying normal kinematics and implanted target (BRILLIANT) is a project to realize light-ion reaction with implanted targets. The first application is for ⁷Be to measure the ⁷Be(d, p) reaction for studying the primordial ⁷Li production in Big-Bang nucleosynthesis (BBN).

The overestimation of primordial ⁷Li abundance in the standard BBN model is one of the known and unresolved problems in nuclear astrophysics. The latest theoretical BBN model prediction of the primordial ⁷Li abundance is still 3 times higher than the recent precise observation.¹⁾ A key to solve the discrepancy is the destruction of ⁷Be, for which the ⁷Be(d, p)⁸Be and ⁷Be(n, α)⁴He reactions are two promising processes. It is suggested that the contribution from ⁷Be(d, p)⁸Be is larger than that from ⁷Be(n, α)⁴He.^{2,3)} We focus on the ⁷Be $(d, p)^8$ Be reaction. Present available data are insufficient in terms of the accuracy or energy range.^{4,5)} We develop an unstable ⁷Be target for a high-resolution measurement of the ${}^{7}\text{Be}(d, p){}^{8}\text{Be}$ reaction in normal kinematics, which is a great technical challenge. We call the technique "implantation method." The ⁷Be particles are implanted in a host material. Our goal is to implant 1×10^{12} ⁷Be /mm² in 29 h.^{6,7)}

We performed an experiment in June 2016 to create the ⁷Be target at CRIB. The primary beam was ⁷Li²⁺, and the secondary beam was produced by the ¹H(⁷Li, ⁷Be) reaction. The ⁷Be beam energy was 4.0 MeV/nucleon. We used a 10-µm-thick Au foil as the host material after a 15-µm-thick Au foil as an energy degrader and a 2-mm ϕ collimator (Fig. 1).

Fig. 1. Set up in the CRIB F2 chamber.

- *1 Research Center for Nuclear Physics, Osaka University
- *2 Center for Nuclear Study, University of Tokyo
- *³ Japan Atomic Energy Agency
- *⁴ Department of Physics, Osaka University
- *⁵ Rare Isotope Science Project, Institute for Basic Science
- *⁶ Department of Applied Physics, Faculty of Engineering, University of
- Miyazaki
- *7 RIKEN Nishina Center

We checked the beam focus and position with the F2 PPAC detector when the beam intensity was about 10^4 pps at F2. The beam diameter at F2 was 10 mm. We implanted ⁷Be for 19 h after increasing the beam intensity to 1.1 eµA.

The amount of implanted ⁷Be was measured by detecting the 477-keV γ -rays from the electron-capture decay of ⁷Be using a LaBr₃ detector. Thus, we could achieve the implantation of 4×10^{10} ⁷Be/mm² in the first experiment.

The number is still smaller than the goal. We suspect that the beam-spot size and the beam position at F2 were not fully optimized for the high-intensity beam and not maintained well during the long irradiation time.

As a next step, we plan to have a development beam time to satisfy those conditions for producing a high-intensity ⁷Be beam at CRIB.

Fig. 2. Comparison between the γ -ray measurement of the implanted target and the background. An obvious 477-keV peak appeared after the irradiation.

References

- 1) R. H. Cyburt et al., J. Cosmol. Astropart. Phys. 11, 012 (2008).
- 2) S. Q. Hou et al., Phys. Rev. C 91, 055802 (2015).
- 3) T. Kawabata et al., Phys. Rev. Lett. 118, 052701 (2017).
- 4) R. W. Kavanagh et al., Nucl. Phys. 18, 493 (1960).
- 5) C. Angulo et al., Astrophys. J. 630, L 105 (2005).
- 6) H. Yamaguchi et al., Nucl. Instr. Meth. A 589, 150 (2008).
- 7) G. Amadio et al., Nucl. Instr. Meth. A 590, 191 (2008).