Investigation of isoscalar and isovector dipole excitations in ²⁰O

N. Nakatsuka,^{*1,*2} H. Baba,^{*2,*2} N. Aoi,^{*10} T. Aumann,^{*3} R. Avigo,^{*5,*14} S. R. Banerjee,^{*12} A. Bracco,^{*5,*14} C. Caesar,^{*3} F. Camera,^{*5,*14} S. Ceruti,^{*5,*14} S. Chen,^{*13,*2} V. Derya,^{*4} P. Doornenbal,^{*2} A. Giaz,^{*5,*14}

A. Horvat,^{*3} K. Ieki,^{*11} N. Imai,^{*7} T. Kawabata,^{*1} K. Yoneda,^{*2} N. Kobayashi,^{*8} Y. Kondo,^{*9} S. Koyama,^{*8}

M. Horvat, J. R. Ioh, J. P. Hau, J. P. Haudouda, J. P. Folcad, J. R. Folcad, J. R. Horodyami, J. Horlato, S. Hoyama, M. Kurata-Nishimura,^{*2} S. Masuoka,^{*7} M. Matsushita,^{*7} S. Michimasa,^{*7} B. Millon,^{*5} T. Motobayashi,^{*2}
T. Murakami,^{*1} T. Nakamura,^{*9} T. Ohnishi,^{*2} H. J. Ong,^{*10} S. Ota,^{*7} H. Otsu,^{*2} T. Ozaki,^{*9} A. T. Saito,^{*9} H. Sakurai,^{*2,*8} H. Scheit,^{*3} F. Schindler,^{*3} P. Schrock,^{*3} Y. Shiga,^{*11,*2} M. Shikata,^{*9} S. Shimoura,^{*7}

- D. Steppenbeck,^{*2} T. Sumikama,^{*6,*2} I. Syndikus,^{*3} H. Takeda,^{*2} S. Takeuchi,^{*2} A. Tamii,^{*10} R. Taniuchi,^{*8} Y. Togano,^{*9} J. Tscheuschner,^{*3} J. Tsubota,^{*9} H. Wang,^{*2} O. Wieland,^{*5} K. Wimmer,^{*8,*2} Y. Yamaguchi,^{*7} and J. Zenihiro^{*2}

The electric dipole excitation is one of the most basic properties of atomic nuclei. Neutron-rich nuclei are predicted to have exotic electric dipole excitations owing to their small neutron separation energy and excess neutrons. One example of such excitations in neutron-rich nuclei is the low-energy dipole excitations found at excitation energies less than 10 MeV. Recent experimental studies on stable nuclei revealed that some low-energy dipole excitations show specific isospin character¹) called isospin splitting. In order to study the isospin properties of low-energy dipole excitations in neutron-rich oxygen isotopes, we performed an experiment at RIBF and measured the dipole resonances of the neutron-rich nucleus ²⁰O. The beam was produced via projectile fragmentation of a 345-MeV/nucleon ⁴⁸Ca beam on ⁹Be target with a thickness of 2.8 g/cm^2 . Two secondary targets, a 5g/cm²-thick gold target for coulomb excitation and a 300 mg/cm^2 thick liquid helium target for inelastic α particle scattering, were used to obtain the isovector and isoscaler dipole strengths independently. The γ rays from the excited beam particles were detected with large volume LaBr₃ crystals from INFN Milano²⁾ in combination with DALI2³). A preliminary dopplercorrected γ -ray spectrum of the $\alpha(^{20}O,^{20}O\gamma)$ reaction is shown in Fig. 1 (a), and the spectrum of $Au(^{20}O, ^{20}O\gamma)$ reaction is shown in Fig. 1 (b). Preliminary fits are presented by red solid lines, and two 1⁻ states are identified. A clear difference is observed between the two spectra. This suggests that the Coulomb excitation and inelastic α -particle scattering have different sensitivities to the isospin and are actually effec-

- *2 **RIKEN** Nishina Center
- *3 Institut für Kernphysik, Technische Universität Darmstadt
- *4 Institut für Kernphysik, Universität zu Köln
- *5Istituto Nazionale di Fisica Nucleare Milan
- *6 Department of Physics, Tohoku University
- *7 Center for Nuclear Study, The University of Tokyo
- *8 Department of Physics, The University of Tokyo
- *9 Department of Physics, Tokyo Institute of Technology
- $^{\ast 10}$ Research Center for Nuclear Physics, Osaka University
- $^{\ast 11}$ Department of Physics, Rikkyo University
- *¹² Variable Energy Cyclotron Centre, The Indian Department of Atomic Energy
- *¹³ School of Physics, Peking University
- $^{\ast 14}$ University of Milan

tive to determine the isovector and isoscalar strength. Further analysis using the distorted-wave Born approximation is in progress to determine the isovector and isoscalar strengths of the observed low-energy dipole excitations.

Fig. 1. Preliminary fits of Doppler-corrected γ ray spectra: $^{20}\text{O}+\alpha$ (top panel) and $^{20}\text{O}+\text{Au}$ (bottom panel).

References

- 1) A. Bracco et al., Euro. Phys. J. A 51, 99 (2015).
- 2) A. Giaz et al., Nucl. Instrum. Methods Phys. Res., Sec. A 729, 910 (2013).
- 3) S. Takeuchi et al., Nucl. Instrum. Methods Phys. Res., Sec. A 763, 596 (2014).

^{*1} Department of Physics, Kyoto University