## Nucleus <sup>26</sup>O: A barely unbound system beyond the drip line<sup>†</sup>

Y. Kondo,<sup>\*1,\*2</sup> T. Nakamura,<sup>\*1,\*2</sup> R. Tanaka,<sup>\*1,\*2</sup> R. Minakata,<sup>\*1,\*2</sup> S. Ogoshi,<sup>\*1,\*2</sup> N. A. Orr,<sup>\*3</sup> N. L. Achouri,<sup>\*3</sup> T. Aumann,<sup>\*4,\*5</sup> H. Baba,<sup>\*2</sup> F. Delaunay,<sup>\*3</sup> P. Doornenbal,<sup>\*2</sup> N. Fukuda,<sup>\*2</sup> J. Gibelin,<sup>\*3</sup> J. W. Hwang,<sup>\*6</sup> N. Inabe,<sup>\*2</sup> T. Isobe,<sup>\*2</sup> D. Kameda,<sup>\*2</sup> D. Kanno,<sup>\*1,\*2</sup> S. Kim,<sup>\*6</sup> N. Kobayashi,<sup>\*1,\*2</sup> T. Kobayashi,<sup>\*7,\*2</sup>

T. Kubo,\*<sup>2</sup> S. Leblond,\*<sup>3</sup> J. Lee,\*<sup>2</sup> F. M. Marqués,\*<sup>3</sup> T. Motobayashi,\*<sup>2</sup> D. Murai,\*<sup>8</sup> T. Murakami,\*<sup>9</sup> K. Muto,\*<sup>7</sup> T. Nakashima,\*<sup>1,\*2</sup> N. Nakatsuka,\*<sup>9,\*2</sup> A. Navin,\*<sup>10,\*13</sup> S. Nishi,\*<sup>1,\*2</sup> H. Otsu,\*<sup>2</sup> H. Sato,\*<sup>2</sup> Y. Satou,\*<sup>6</sup> Y. Shimizu,\*<sup>2</sup> H. Suzuki,\*<sup>2</sup> K. Takahashi,\*<sup>7</sup> H. Takeda,\*<sup>2</sup> S. Takeuchi,\*<sup>2</sup> Y. Togano,\*<sup>5,\*14</sup> A. G. Tuff,\*<sup>11</sup>

M. Vandebrouck,<sup>\*12</sup> and K. Yoneda<sup>\*2</sup>

The unbound nucleus <sup>26</sup>O has been investigated using invariant-mass spectroscopy following a one-proton removal reaction from a <sup>27</sup>F beam at 201 MeV/nucleon. The ground state of <sup>26</sup>O has recently been found to be barely unbound with respect to two-neutron emission – by 53 keV (1 $\sigma$  upper limit) in an intermediate energy reaction  $study^{1,2}$  and by 120 keV (upper limit with a 95% confidence level) at high energies.<sup>3)</sup> The  $2_1^+$  state has yet, however, to be located. It may be noted that  $\operatorname{Ref.}^{3)}$  claimed the existence of a level at 4.2 MeV, which could be a protonhole state, although the statistics were limited.

The  ${}^{27}$ F secondary beam was produced by projectile fragmentation of  ${}^{48}Ca$  (~140 pnA) at 345 MeV/nucleon. It was purified using BigRIPS and transported to a secondary target of carbon (thickness  $1.8 \text{ g/cm}^2$ ). The decay products, <sup>24</sup>O and neutron(s), were measured in coincidence using the spectrometer SAMURAI.<sup>4)</sup> In addition to the measurements made of  $^{26}\mathrm{O}$  with the  $^{27}\mathrm{F}$  beam, data were also taken for one-proton removal from a  $^{26}\mathrm{F}$  beam leading to  $^{25}\mathrm{O}.$ 

The obtained relative energy spectrum of  $^{25}$ O was fitted with a *d*-wave Breit-Wigner line shape, following the prescription of Ref.<sup>3)</sup>, after taking into account the experimental response function. In practice this was done using a complete simulation of the setup based on GEANT4 and employing the QGSP\_INCLXX physics model for the neutron interactions in NEBULA. A resonance energy of 749(10) keV and a width of 88(6) keV were deduced.

- t Condensed from the article in Phys. Rev. Lett. 116, 102503 (2016)\*1
- Department of Physics, Tokyo Institute of Technology
- \*2 **RIKEN** Nishina Center
- \*3 LPC-Caen, ENSICAEN, Université de Caen, CNRS/IN2P3
- \*4Institut für Kernphysik, Technische Universität Darmstadt
- \*5 ExtreMe Matter Institute (EMMI) and Research Division, GSI
- \*6 Department of Physics and Astronomy, Seoul National University
- \*7 Department of Physics, Tohoku University
- \*8Departiment of Physics, Rikkyo University
- \*9 Department of Physics, Kyoto University
- \*10GANIL, CEA/DSM-CNRS/IN2P3
- $^{\ast 11}$  Department of Physics, University of York
- \*12 Institut de Physique Nucléaire, Université Paris-Sud, IN2P3-CNRS
- \*<sup>13</sup> Present address: GANIL CEA/DRF-CNRS/IN2P3
- $^{\ast 14}$  Present address: Department of Physics, Tokyo Institute of Technology



Fig. 1. Three-body decay energy spectrum of <sup>26</sup>O reconstructed from <sup>24</sup>O and two neutrons in the one-proton removal reaction from  $^{27}$ F.

Turning now to <sup>26</sup>O, the ground-state resonance was found to lie only  $18\pm3(\text{stat})\pm4(\text{syst})$  keV above the threshold (Fig. 1). In addition, a higher level, which is most likely the first  $2^+$  state, was observed for the first time at  $1.28^{+0.11}_{-0.08}$  MeV. On the other hand, no resonance-like structure was observed at higher energies as reported in Ref.<sup>3)</sup>. Comparison of the  ${}^{26}O(2^+_1)$ energy with theory suggests that three-nucleon forces, pf-shell intruder configurations, as well as an appropriate treatment of the continuum are key elements to understanding the structure of the heaviest oxygen isotopes.

## References

- 1) Z. Kohley et al.: Phys. Rev. C 91, 034323 (2015).
- 2) E. Lunderberg et al.: Phys. Rev. Lett. 108, 142503 (2012).
- 3) C. Caesar et al.: Phys. Rev. C 88, 034313 (2013).
- 4) T. Kobayashi et al.: Nucl. Instrum. Methods. Phys. Res. Sect. B 317, 294 (2013).
- T. Nakamura, Y. Kondo et al.: Nucl. Instrum. Methods. Phys. Res. Sect. B 376, 156 (2015).
- 6) C. R. Hoffman et al.: Phys. Rev. Lett. 100, 152502 (2008).