## β decay of <sup>140</sup>Sb: level scheme of <sup>140</sup>Te<sup>†</sup>

B. Moon,\*¹ C.-B. Moon,\*² P.-A.Söderström,\*³ A. Odahara,\*⁴ R. Lozeva,\*⁵ B. Hong,\*¹ F. Browne,\*³ H. S. Jung,\*⁶ P. Lee,\*⁶ C. S. Lee,\*⁶ A. Yagi,\*⁴ C. Yuan,\*ˀ S. Nishimura,\*³ P. Doornenbal,\*³ G. Lorusso,\*³ H. Watanabe,\*³ I. Kojouharov,\*ፆ T. Sumikama,\*³ T. Isobe,\*³ H. Baba,\*³ H. Sakurai,\*³ R. Daido,\*⁴ Y. Fang,\*⁴ H. Nishibata,\*⁴ Z. Patel,\*⁰ S. Rice,\*⁰ L. Sinclair,\*¹⁰ J. Wu,\*³ Z. Y. Xu,\*¹¹ R. Yokoyama,\*¹² T. Kubo,\*³ N. Inabe,\*³ H. Suzuki,\*³ N. Fukuda,\*³ D. Kameda,\*³ H. Takeda,\*³ D. S. Ahn,\*³ Y. Shimizu,\*³ D. Murai,\*¹³ F. L. Bello Garrote,\*¹⁴ J. M. Daugas,\*³,\*¹⁵ F. Didierjean,\*⁵ E. Ideguchi,\*⁴ T. Ishigaki,\*⁴ S. Morimoto,\*⁴ M. Niikura,\*³ I. Nishizuka,\*¹⁶ T. Komatsubara,\*³ Y. K. Kwon,\*¹¹ and K. Tshoo\*¹¹

We report the first observation of the level structure of  $^{140}$ Te through the  $\beta$ -delayed  $\gamma$ -ray spectroscopy of  $^{140}$ Sb. The structure of Te with N>82, two protons beyond Z=50, is expected to provide a wealth of information on the shell evolution in extreme proton-neutron imbalanced environments. Besides, the present work provides valuable inputs for modelling the nucleosynthesis since the  $^{140}$ Sb decay process is one of important paths along the rapid neutron capture process.

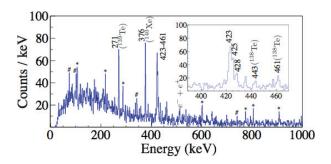



Fig. 1. Singles  $\gamma\text{-ray}$  spectrum associated with the  $\beta$  decay of  $^{140}\text{Sb}$  obtained in 2000 ms time interval after ions are implanted on the active target. The inset is a zoomed spectrum in representing the 380 to 470 keV region. Peaks with an asterisk are room- and beam-induced backgrounds from random coincidence with  $\beta$  events. Peaks with a # mark represent unassigned  $\gamma$  rays after decays of Te nuclides.

- † Condensed from the article in Phys. Rev. C. **95**, 044322 (2017)
- \*1 Department of Physics, Korea University
- \*2 Department of Display Engineering, Hoseo University
- \*3 RIKEN Nishina Center
- \*4 Department of Physics, Osaka University
- \*5 IPHC, CNRS, IN2P3 and University of Strasbourg
- \*6 Department of Physics, Chung-Ang University
- \*7 Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University
- \*8 GSI Helmholtzzentrum für Schwerionenforschung GmbH
- \*9 Department of Physics, University of Surrey
- \*10 Department of Physics, University of York
- \*11 Department of Physics, University of Tokyo
- \*12 Center for Nuclear Study, University of Tokyo
- \*13 Department of Physics, Rikkyo University
- \*14 Department of Physics, University of Oslo
- \*15 CEA, DAM, DIF
- \*16 Department of Physics, Tohoku University
- \*17 Rare Isotope Science Project, Institute for Basic Science

The parent  $^{140}Sb$  nuclides were produced by the in-flight fission of a 345 MeV per nucleon  $^{238}U$  beam on a  $^9Be$  target and selected by the first stage of the BigRIPS separator. During the beam time, a total of  $7.8\times10^3$  ions for  $^{140}Sb$  were collected among about  $10^7$  total ions. Emitted  $\gamma$  rays, following the  $\beta$  decay of  $^{140}Sb$  were collected by EURICA, the HPGe array, surrounding the active double-side stripped Si stopper array WAS3ABi¹). Figure 1 shows the  $\beta$ -delayed  $\gamma$ -ray spectrum of  $^{140}Sb$ . The broad peaks around 425 keV are composed of triple photo-peak as shown in the inset of Fig. 1; 423, 425, and 428 keV. On the basis of the  $\gamma\gamma$  coincidence data and  $\gamma$ -ray intensities in the singles spectrum, we propose that the 423- and 425-keV peaks should be assigned as  $\gamma$ -ray transitions in  $^{140}Te$ .

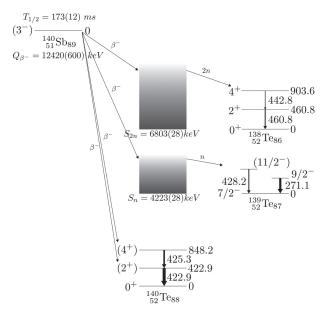



Fig. 2. The  $\beta$ -decay scheme of  $^{140}\text{Sb}$  deduced from the present work. The thicknesses of each transition represent the relative intensities to the 423 keV transition.

As shown in Fig. 2, we successfully identified  $\beta$ -decay scheme,  $\beta$ -delayed one-neutron emission, and  $\beta$ -delayed two-neutron emission channels from the decay of <sup>140</sup>Sb.

## Reference

1) P.-A. Söderström et al. Nucl. Instrum. Methods Phys. Res. B **317**, 649 (2013).