B. Moon,^{*1} C.-B. Moon,^{*2} A. Odahara,^{*3} R. Lozeva,^{*4} C. Yuan,^{*5} P.-A. Söderström,^{*6} F. Browne,^{*6}
H. S. Jung,^{*7} P. Lee,^{*8} C. S. Lee,^{*8} A. Yagi,^{*3} S. Nishimura,^{*6} P. Doornenbal,^{*6} G. Lorusso,^{*6} H. Watanabe,^{*6}
I. Kojouharov,^{*9} T. Sumikama,^{*6} T. Isobe,^{*6} H. Baba,^{*6} H. Sakurai,^{*6} R. Daido,^{*3} Y. Fang,^{*3} H. Nishibata,^{*3}
Z. Patel,^{*10} S. Rice,^{*10} L. Sinclair,^{*11} J. Wu,^{*6} Z. Y. Xu,^{*12} R. Yokoyama,^{*13} T. Kubo,^{*6} N. Inabe,^{*6}
H. Suzuki,^{*6} N. Fukuda,^{*6} D. Kameda,^{*6} H. Takeda,^{*6} D. S. Ahn,^{*6} Y. Shimizu,^{*6} D. Murai,^{*14}
F. L. Bello Garrote,^{*15} J. M. Daugas,^{*6*16} F. Didierjean,^{*5} E. Ideguchi,^{*3} T. Ishigaki,^{*3} S. Morimoto,^{*3}

M.Niikura,^{*6} I. Nishizuka,^{*17} T. Komatsubara,^{*6} Y. K. Kwon,^{*18} and K. Tshoo^{*18}

The region beyond the doubly-magic nucleus 132 Sn is currently the subject of great experimental and theoretical interest in view of the shell structure evolution and rapid neutron capture processes. An accurate measurement of the β -decay of neutron-rich nuclei is crucial for the determination of the r-process path. We report the first observation of excited states of 140 I by the β -delayed γ -ray spectrosocopy of 140 Te.

The ¹⁴⁰Te nuclide was produced by the in-flight fission with a 345 MeV per nucleon ²³⁸U primary beam on a ⁹Be target by means of the BigRIPS separator. A total of 1.8×10^6 ions of ¹⁴⁰Te was implanted during the beam time among about 10⁷ total implanted ions. After beams were implanted on the active double-side stripped silicon detector array, WAS3ABi, γ -rays following after the β -decay were detected by Euroball RIKEN HPGe Cluster Array(EURICA) surrounding WAS3ABi.^{1,2)}

Total 40 γ -rays were assigned as internal transitions of ¹⁴⁰I. The level scheme of ¹⁴⁰I as shown in Fig. 1 has been built based on $\gamma\gamma$ coincidence matrices and the β -delayed γ -ray singles spectrum. The β -decay halflife of the parent ¹⁴⁰Te was obtained to be 350(5) ms by the 341-, 739-, 875-keV transitions.

Spin parity assignments of the established levels were made on the basis of the $\log ft$ value argument. For instance, those with $\log ft$ values of near 6 to 7, applying to the region of the first forbidden β strengths,

- *³ Department of Physics, Osaka University
- ^{*4} IPHC, CNRS, IN2P3 and University of Strasbourg
- *5 Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University
 *6 BUKEN Nicking Contor
- *⁶ RIKEN Nishina Center *7 A gamma of Defense Der
- *7 Agency of Defence Development *8 Department of Physics, Chung Ang Uni
- *8 Department of Physics, Chung-Ang University *9 GSI Helmholtzzentrum für Schwerionenforschun
- *9 GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291, Darmstadt, Germany
- $^{\ast 10}$ Department of Physics, University of Surrey
- $^{\ast 11}$ Department of Physics, University of York
- *12 Department of Physics, University of Tokyo
- $^{\ast 13}$ Center for Nuclear Study, University of Tokyo
- *¹⁴ Department of Physics, Rikkyo University
- *¹⁵ Department of Physics, University of Oslo
- *¹⁶ CEA, DAM, DIF
- $^{\ast 17}$ Department of Physics, Tohoku University
- *¹⁸ Rare Isotope Science Project, Institute for Basic Science

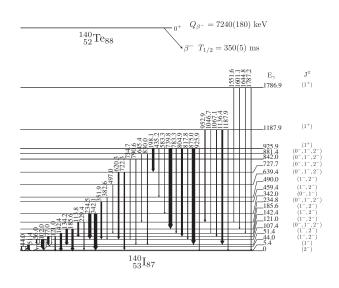


Fig. 1. The level scheme of ¹⁴⁰I. The thickness of each transition represents the relative intensity to the 44 keV transition.

are possibly 0, 1, and 2. We note that the spin-parity of the ground state should be assigned as (2^-) according to our analysis of the β -decay to ¹⁴⁰Xe. The 5.4-keV level is likely to be a (1^-) state based on the shell model calculations. Additionally, levels with a direct transition to the ground state are assigned as (1^-) or (2^-) by assuming that all transitions are M1.

The level at 926 keV is assigned as an 1⁺ state with an argument based on the log ft value, 4.89. This 1⁺ state is strongly related to the Gamow-Teller(G-T) transition. In this region, the only allowed β -decay transitions, G-T transitions, involves the decay of an $h_{9/2}$ neutron to an $h_{11/2}$ proton. Such a decay from an even-even nucleus gives rise to a $[\nu h_{9/2} \pi h_{11/2}]$ 1⁺ state in the odd-odd daughter nucleus.

References

- P.-A. Söderström et al. Nucl. Instrum. Methods Phys. Res., Sect. B 317, 649 (2013).
- S. Nishimura, Prog. Theor. Exp. Phys. 2012, 03C006 (2012).

^{*&}lt;sup>1</sup> Department of Physics, Korea University

^{*&}lt;sup>2</sup> Department of Display Engineering, Hoseo University