Magnetic ordering and spin dynamics driven by p-orbital in RbO₂

F. Astuti, *^{1,*3} D. P. Sari^{*2,*3} I. Watanabe, *^{1,*3} M. Miyajima, *⁴ and T. Kambe^{*4}

Magnetism in the π -electron system has attracted attention for the possibility of the new kinds of the magnetic informative materials. Alkali-metal superoxides AO2 (A= Na, K, Rb, Cs) present an interesting example of magnetic materials on the basis of *p*-elements. These systems have a dumbbell-type bonding state of O atoms forming the valence state of O_2^- and resulting in one unpaired π -electron on the O_2^- dumbbell. They further show the changing of crystal structure introducing the splitting of the p-orbital degeneracy, similar to the Jahn-Taller effect. Beside the crystallographic phase transition due to molecular ordering of the disordered O_2^- , the magnetic order in alkali metal superoxide is interesting to study. In the case of superoxides, the number of unpaired electrons is only one on the O_2^- dumbbell, and magnetic superexchange interaction is expected between those unpaired spins through the A metal. Accordingly, a different magnetically ordered state from that observed in the solid oxygen molecule¹⁾ is expected in superoxides, but detailed information on magnetic properties is still missing. The magnetic ordering of KO2, RbO2, and CsO2 have been observed at temperatures of 7 K, 15 K, and 9.6 K, respectively, using specific heat measurement.²⁾ The Tomonaga Luttinger Liquid (TLL) model suggests that a field-induced magnetic order should appear in the CsO₂ that is related to the TLL state.³⁾

Fig. 1. $ZF-\mu SR$ time spectra for CsO_2 for the first microsecond from 10 K down to base temperature.

Therefore, a detailed investigation on the magnetic properties near or in the zero-field (ZF) condition is strongly required to describe the magnetically ordered state that appears in the CsO_2 and other alkali metal superoxides.

Fig. 2. Temperature dependence of the initial asymmetry and relaxation rate (λ) of the ZF- μ SR time spectra measured at the RIKEN-RAL Muon Facility. The anomaly in the μ SR measurement is observed in between 10 and 15 K around the suggested T_N.

We carried out μ SR measurements in CsO₂ at the PSI Switzerland using the continuous muon beam. Clear spontaneous muon-spin precession behavior indicates the appearance of a long-range magnetic ordered state. This is evidence of the coherent static magnetically ordered state of π -electrons in oxygen molecules. Another alkali-metal superoxide, RbO2, which has a crystal structure similar to that of CsO₂ (CaC₂-like), was tested at the RIKEN-RAL. In this system, only a type of anomaly in the magnetic susceptibility of RbO_2 is reported at $T_{\rm N}$ \sim 15 K, as indicated.⁴⁾ Unfortunately, we could not observe clear muon-spin precession as shown in Fig.1, although the decrease in the initial asymmetry around the suggested T_N was observed, as displayed in Fig. 2. The decrease in the initial asymmetry and increase in the relaxation rate (λ) possibly means the magnetically ordered state appears, causing a depolarization behavior that is faster than the time limitation of the pulsed muon facility. This ordered state might accommodate the fast muon-spin precession as well as the case of CsO₂. Therefore, it is necessary to test RbO₂ at PSI using the continuous muon beam in order to detect clear evidence of the appearance of magnetically ordered states.

References

- 1) C. Uyeda et al., JPSJ, 54 (1985)
- 2) A. Zumsteg et al., Phys. Cond. Matter, 267-291 (1974)
- 3) M. Klansjek et al., PRL 115, 057205 (2015)

^{*1} Department of Physics, Hokkaido University

^{*&}lt;sup>2</sup> Department of Physics, Osaka University

^{*3} RIKEN Nishina Center

^{*4} Department of Physics, Okayama University

⁴⁾ M. Labhart et al., PRB 20, 53 (1979)