Two-Proton Radioactivity of ⁶⁷Kr[†]

T. Goigoux,^{*1} P. Ascher,^{*1} B. Blank,^{*1} M. Gerbaux,^{*1} J. Giovinazzo,^{*1} S. Grévy,^{*1} T. Kurtukian Nieto,^{*1} C. Magron,^{*1} J. Agramunt,^{*2} A. Algora,^{*2,*3} V. Guadilla,^{*2} A. Montaner-Piza,^{*2} A. I. Morales,^{*2} S. E. A. Orrigo,^{*2} B. Rubio,^{*2} D. S. Ahn,^{*4} P. Doornenbal,^{*4} N. Fukuda,^{*4} N. Inabe,^{*4} G. G. Kiss,^{*4} T. Kubo,^{*4} S. Kubono,^{*4}

S. Nishimura,^{*4} H. Sakurai,^{*4,*5} Y. Shimizu,^{*4} C. Sidong,^{*4} P.-A. Söderström,^{*4} T. Sumikama,^{*4} H. Suzuki,^{*4}

H. Shihinda, M. Sakuta, M. Sakuta, M. Shihinzu, C. Sidong, M. A. Soderström, M. Suzuki, H. Suzuki, H. Suzuki, M. Takeda, A. P. Vi, *4 J. Wu, *4 Y. Fujita, *6,*7 M. Tanaka, *6 W. Gelletly, *2,*8 P. Aguilera, *9 F. Molina, *9 F. Diel, *10 D. Lubos, *11 G. de Angelis, *12 D. Napoli, *12 C. Borcea, *13 A. Boso, *14 R. B. Cakirli, *15 E. Ganioglu, *15 J. Chiba, *16 D. Nishimura, *16 H. Oikawa, *16 Y. Takei, *16 S. Yagi, *16 K. Wimmer, *3 G. de France, *17 S. Go, *18 and *19 B. A. $Brown^{*19}$

 β decay is the predominant decay mode in protonrich nuclei close to stability, but further away from stability valley the binding energy of excess protons decreases and β -delayed proton emission becomes more likely. When the one or two-proton separation energies S_n and S_{2n} become negative, the dripline is reached and one- or two-proton emission from the ground state for odd- and even-Z elements, respectively, competes with β decay.

Two-proton (2p) radioactivity is a unique tool to study nuclear structure beyond the proton dripline. Predicted in 1960,¹⁾ this direct emission of two protons was discovered in 2002 in the decay of ${}^{45}\text{Fe.}^{2,3)}$ The other known medium-mass cases ${}^{48}Ni^{4)}$ and ${}^{54}Zn^{5)}$ were discovered in the same decade.

According to mass predictions, the heavier nuclei 59 Ge, 63 Se and 67 Kr are candidates for 2p emission. They were successfully produced and identified during the 78 Kr beam campaign in 2015⁶) at RIBF. 63 Se and $^{67}\mathrm{Kr}$ were observed for the first time and $^{59}\mathrm{Ge}$ for the second.

The nuclei of interest⁷) were implanted in WAS3ABi, a set of three DSSSDs to measure the energy of β particles and protons. The vertical and horizontal strips allowed ion-decay position correlations, greatly reducing the background in the energy spectra. WAS3ABi was surrounded by the EURICA γ -ray array.⁸⁾

No 2p evidence was found for ⁵⁹Ge and ⁶³Se. Fig-

- *2 IFIC, CSIC-Universidad de Valencia
- *3 Atomki, Debrecen
- *4 **RIKEN** Nishina Center
- *5 Department of Physics, University of Tokyo
- *6 Department of Physics, Osaka University *7
- Research Center for Nuclear Physics, Osaka University
- *8 Department of Physics, University of Surrey *9
- Comisíon Chilena de Energia Nuclear *10
- Institute of Nuclear Physics, University of Cologne
- *11 Physik Department E12, Technische Universität München
- *12 Laboratori Nazionali di Legnaro dell' INFN
- *13 IFIN-HH
- ^{*14} INFN Sezione di Padova and Dipartimento di Fisica
- ^{*15} Department of Physics, Istanbul University
- *16 Department of Physics, Tokyo University of Science
- *¹⁷ Grand Accélérateur National d'Ions Lourds
- ^{*18} Dept. of Physics and Astronomy, University of Tennessee
- ^{*19} Department of Physics and Astronomy, and NSCL, MSU

Fig. 1. Charged-particle energy spectra (left) and decaytime distributions (right) for events above 1 MeV to reject β decays without protons, for ⁵⁹Ge, ⁶³Se and ⁶⁷Kr. For the charged-particle spectra: in blue all decay events correlated within a 100 ms time window, and in red in coincidence with β particles detected in neighbouring detectors. The inset in (f) is obtained from the 1690keV peak events of spectrum (e).⁷⁾

ure 1(a) and (c) do not show any peak without coincident β detection. However, the ⁶⁷Kr spectrum (e) shows a clear peak at 1690(17) keV originating from 2p radioactivity without any coincident β particle or 511-keV γ ray. A 2p branching ratio of 37(14)% and a half-life of 7.4(30) ms were found, leading to a 2p partial half-life of 20(11)ms, in strong disagreement with the three-body half-lives⁹⁾ for different ℓ^2 configurations.

References

- 1) V.I. Goldansky, Nucl. Phys. 19, 482 (1960).
- 2) J. Giovinazzo et al., Phys.Rev. Lett. 89, 102501 (2002).
- 3) M. Pfützner et al., Eur. Phys. J. A 14, 279 (2002).
- 4) C. Dossat et al., Phys. Rev. C 72, 054315 (2005).
- 5) B. Blank et al., Phys. Rev. Lett. 94, 232501 (2005).
- 6) B. Blank et al., Phys. Rev. C 93, 061301(R) (2016).
- 7) T. Goigoux et al., Phys. Rev. Lett. 117, 162501 (2016).
- 8) P.-A. Söderström et al., Nucl. Instrum. Methods Phys. Res. Sect. B **317**, 649 (2013).
- 9) L. V. Grigorenko et al., Phys. Rev. C 68, 054005 (2003).

t Condensed from the article in Phys. Rev. Lett. 117, 162501 (2016)

^{*1} CEN Bordeaux Gradignan